23 resultados para Poços de Caldas (MG)
Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132.
Resumo:
Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (IS2 2s(2) 2P(6)) 3l(2) , 3l3l', and 3l4l configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interact ion (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate Cl for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (MI), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.