3 resultados para Plasma-Renin Activity


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bacterial pigment prodigiosin has various biological activities; it is, for instance, an effective antimicrobial. Here, we investigate the primary site targeted by prodigiosin, using the cells of microbial pathogens of humans as model systems: Candida albicans, Escherichia coli, Staphylococcus aureus. Inhibitory concentrations of prodigiosin; leakage of intracellular K+ ions, amino acids, proteins and sugars; impacts on activities of proteases, catalases and oxidases; and changes in surface appearance of pathogen cells were determined. Prodigiosin was highly inhibitory (30% growth rate reduction of C. albicans, E. coli, S. aureus at 0.3, 100 and 0.18 μg ml−1, respectively); caused leakage of intracellular substances (most severe in S. aureus); was highly inhibitory to each enzyme; and caused changes to S. aureus indicative of cell-surface damage. Collectively, these findings suggest that prodigiosin, log Poctanol–water 5.16, is not a toxin but is a hydrophobic stressor able to disrupt the plasma membrane via a chaotropicity-mediated mode-of-action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms.