7 resultados para Physico-chimie générale
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.
Resumo:
Physico-chemical regimes of river systems are major determinants of the distributions and relative abundances of macroinvertebrate taxa. Other factors, however, such as biotic interactions, may co-vary with changes in physico-chemistry and concomitant changes in community composition. Thus, direct cause and effect relationships may not always be established from field surveys. Equally, however, laboratory studies may suffer from lack of realism in extrapolation to the field. Here, we use balanced field transplantation experiments to elucidate the role of physico-chemical regime in determining the generally mutually exclusive distributions of two amphipod taxa, Gammarus (two species) and Crangonyx pseudogracilis. Within two river systems in Ireland, the former species dominate stretches of well oxygenated, high-quality water, whereas the latter dominates stretches of poorly oxygenated, low-quality water. G. pulex and G. duebeni celticus did not survive in bioassay tubes in areas dominated by C. pseudogracilis, which itself survived in tubes in such areas. However, both C. pseudogracilis and Gammarus spp. survived equally well in tubes in areas dominated by Gammarus spp. Physicochemical regime thus limits the movement of Gammarus spp. into C. pseudogracilis areas, but some other factor excludes C. pseudogracilis from Gammarus spp. areas. Since previous laboratory experiments showed high predation rates of Gammarus spp. on C. pseudogracilis, we propose that predation by the former causes exclusion of the latter. Hence, presumed effects of physico-chemical regime on macroinvertebrate presence/abundance may often require experimental field testing and appreciation of alternative explanations.
Resumo:
New protic ionic liquids (PILs) based on the diisopropyl-ethylammonium cation have been synthesized through a simple and atom-economic neutralization reaction between the diisopropyl-ethylamine and selected carboxylic acid. Densities and rheological properties were then measured for two original diisopropyl-ethylammonium-based protic ionic liquids (heptanoate and octanoate) at 298.15 K and atmospheric pressure. The effect of the presence of water or acetonitrile on the measured values was also examined over the whole composition range at 298.15 K and atmospheric pressure. From these values, excess properties were calculated and correlated by using a Redlich-Kister-type equation. Finally, a qualitative analysis of the evolution of studied properties with the alkyl chain length of the anion and with the presence or not of water (or acetonitrile) was performed. From this analysis, it appears that selected PILs and their mixtures with water or acetonitrile have a non-Newtonian shear thickening behavior, and the addition of water or acetonitrile on these PILs increases this phenomena by the formation of aggregates in these media.
Resumo:
A recombinant cytoplasmic preparation of lysine: N6-hydroxylase, IucD398, with a deletion of 47 amino acids at the N-terminus, was purified to homogeneity. IucD398 is capable of N-hydroxylation of L-lysine upon supplementation with FAD and NADPH. The enzyme is stringently specific with L-lysine and (S)-2-aminoethyl-L-cysteine serving as substrates. Protonophores, FCCP and CCCP, as well as cinnamylidene, have been found to serve as potent inhibitors of lysine: N6-hydroxylation by virtue of their ability to interfere in the reduction of the flavin cofactor.
Resumo:
The incidence of cyanobacterial blooms in freshwaters, including drinking water reservoirs, has increased over the past few decades due to rising nutrient levels. Microcystins are hepatotoxins released from cyanobacteria and have been responsible for the death of humans as well as domestic and wild animals. Microcystins are chemically very stable and many processes have only limited efficacy in removing them. In this paper we review a range of water treatment methods which have been applied to removing microcystins from potable waters.
Resumo:
The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.