7 resultados para Physical Vapor Transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis(trifluoromethyl)sulfonylimide, [NTf2]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Li-O2 battery may theoretically possess practical gravimetric energy densities several times greater than the current state-of-the-art Li-ion batteries.1 This magnitude of development is a requisite for true realization of electric vehicles capable of competing with the traditional combustion engine. However, significant challenges must be addressed before practical application may be considered. These include low efficiencies, low rate capabilities and the parasitic decomposition reactions of electrolyte/electrode materials resulting in very poor rechargeability.2-4 Ionic liquids, ILs, typically display several properties, extremely low vapor pressure and high electrochemical and thermal stability, which make them particularly interesting for Li-O2 battery electrolytes. However, the typically sluggish transport properties generally inhibit rate performance and cells suffer similar inefficiencies during cycling.5,6

In addition to the design of new ILs with tailored properties, formulating blended electrolytes using molecular solvents with ILs has been considered to improve their performance.7,8 In this work, we will discuss the physical properties vs. the electrochemical performance of a range of formulated electrolytes based on tetraglyme, a benchmark Li-O2 battery electrolyte solvent, and several ILs. The selected ILs are based on the bis{(trifluoromethyl)sulfonyl}imide anion and alkyl/ether functionalized cyclic alkylammonium cations, which exhibit very good stability and moderate viscosity.9 O2 electrochemistry will be investigated in these media using macro and microdisk voltammetry and O2 solubility/diffusivity is quantified as a function of the electrolyte formulation. Furthermore, galvanostatic cycling of selected electrolytes in Li-O2 cells will be discussed to probe their practical electrochemical performance. Finally, the physical characterization of the blended electrolytes will be reported in parallel to further determine structure (or formulation) vs. property relationships and to, therefore, assess the importance of certain electrolyte properties (viscosity, O2supply capability, donor number) on their performance.

This work was funded by the EPSRC (EP/L505262/1) and Innovate UK for the Practical Lithium-Air Batteries project (project number: 101577).

1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).

2. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. Bruce, Angew. Chem., Int. Ed., 50, 8609 (2011).

3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, J. Phys. Chem. Lett., 3, 997 (2012).

4. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 5, 2850 (2014).

5. Z. H. Cui, W. G. Fan and X. X. Guo, J. Power Sources, 235, 251 (2013).

6. F. Soavi, S. Monaco and M. Mastragostino, J. Power Sources, 224, 115 (2013).

7. L. Cecchetto, M. Salomon, B. Scrosati and F. Croce, J. Power Sources, 213, 233 (2012).

8. A. Khan and C. Zhao, Electrochem. Commun., 49, 1 (2014).

9. Z. J. Chen, T. Xue and J.-M. Lee, RSC Adv., 2, 10564 (2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.

We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.

References

[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.

[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.

[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.

This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.

1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313

2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ15N and δ18O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-target interaction represents a very promising field for several potential applications,
from the nuclear physics to the radiobiology. However optically accelerated particle beams are
characterized by some extreme features, not suitable for many applications. Therefore, beyond
the improvements at the laser-target interaction level, many researchers are spending their efforts
for the development of specific beam transport devices in order to obtain controlled and
reproducible output beams.In this background, the ELIMED (ELI-Beamlines MEDical applications)
project was born. Within 2017, a dedicated transport beam-line coupled with dosimetric
systems, named ELIMED, will be installed at the Extreme Light Infrastructure Beamlines
(ELI-Beamlines) facility in Prague (CZ),as a part of the ELIMAIA (ELI Multidisciplinary Applications
of laserâA ¸SIon Acceleration) beamline