3 resultados para Photodegradation in gill net materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica additives in bone substitute materials are topical, clinically interesting and have significant support in the Orthopaedic field. Biosilica, e.g isolated from diatoms, has many advantages over its synthetic counterparts, e.g. it is amorphous, thus will be absorbed by the body, however, issues such as purity, presence of endotoxins and cytotoxicity need to be addressed before it can be further exploited. Biosilica isolated from Cyclotella Meneghiniana was then tested in a mouse model, to test the immunological response, organ toxicity (kidney, spleen, liver) and route of metabolism/excretion of silica. Five-week-old Balb-c mice were injected subcutaneously with a single high dose (50mg/ml) of Si-frustules, Si-frustules + organic linker and vehicle only control. Animals were sacrificed at 1d and 28d. The animal studies were conducted under an ethically approved protocol at Queen’s University, Belfast. The animals showed no adverse stress during the experiment and remained healthy until sacrifice. Blood results using ICP-OES analysis suggest the frustules were metabolized between comparator groups at different rates, and clearly showed elevated levels of silicon in groups injected with frustules relative to control. The histology of organs showed no variation in morphology of mice injected frustules relative compared to the control group.
Acknowledgements: The authors would like to thank Marie Curie International Outgoing Fellowships from the EU and Beaufort Marine Biodiscovery Award as part of the Marine Biotechnology Ireland Programme for providing financial support to this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.