171 resultados para Phosphate deficiency


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.

De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.

Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.

A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of proteoid roots under phosphorus deficiency by white lupin (Lupinus albus) may result in increased arsenate uptake, as arsenate is a phosphate analogue. This, together with its high biomass production, rapid growth and ability to survive in soils with low phosphate and nitrogen contents, low pH and high metal contents make them an interesting species to investigate with respect to revegetation, and possibly also for long-term phytoremediation, of arsenic contaminated soils. Kinetic parameters for arsenate uptake for P-deficient and P-sufficient plants, as well as for proteoid and nonproteoid roots were obtained. Down-regulation of arsenate uptake by phosphate, as well as phosphate/arsenate competition for P-deficient and P-sufficient plants was studied. Arsenate uptake was reduced by phosphate, but small differences were found between P-deficient and P-sufficient plants. Arsenate uptake by proteoid roots was higher than for nonproteoid roots of P-deficient plants, with higher Vmax and similar Km values. Down-regulation of the high affinity phosphate/arsenate uptake system by phosphate does take place but seems to be slower than in other plants. This study suggests that the low sensitivity of the phosphate/arsenate uptake system to regulation by phosphate may be related to the adaptations of white lupin to low P available environments. Such adaptation are absent in plants unable to develop proteoid roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract 2,4-Dinitrophenol was employed with benzyloxy-bis-(diisopropylamino)phosphine to synthesise the cyclic phosphate derivatives of a series of alkane diols (HO–(CH2)n–OH, n=2–6) in good isolated yields. Tetrazole and DNP were compared by 31P NMR spectroscopy for their ability to catalyse the cyclisation at the P(III) stage. Investigation of the phosphate triester stability under various oxidation and chromatographic conditions resulted in the optimisation of the isolation procedures of the chemically unstable cyclic compounds. Conditions for debenzylation were developed to yield the corresponding cyclic phosphodiesters quantitatively. The methodology was further applied to the preparation and isolation of the cyclic phosphate derivative of a carbohydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the possible biotechnological application of the phenomenon of low pH-inducible phosphate uptake and polyphosphate accumulation, previously reported using pure microbial cultures and under laboratory conditions, a 2000 L activated sludge pilot plant was constructed at a municipal sewage treatment works. When operated as a single-stage reactor this removed more than 60% of influent phosphate from primary settled sewage at a pH of 6.0, as opposed to approximately 30% at the typical operational pH for the works of 7.0-7.3-yet without any deleterious effect on other treatment parameters. At these pH values the phosphorus content of the sludge was, respectively, 4.2% and 2.0%. At pH 6.0 some 33.9% of sludge microbial cells were observed to contain polyphosphate inclusions; the corresponding value at pH 7.0 was 18.7%. Such a process may serve as a prototype for the development of alternative biological and chemical options for phosphate removal from wastewaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.