186 resultados para Phosphate Metabolism
Resumo:
2'-Beta-D-arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.
Resumo:
Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.
Resumo:
A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP P450) system was inhibited using piperonyl butoxide (PB). The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP P450 system was inhibited by a 2 h pre-incubation in PB (100 mu M). Flukes were then incubated for a further 22 h in NCTC medium containing either PB; PB + nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM); PB + NADPH + TCBZ (15 mu g/ml); or PB + NADPH + TCBZ.SO (15 mu g/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed using scanning electron microscopy. After treatment with either TCBZ or TCBZ.SO alone, there was greater disruption to the TCBZ-susceptible than the resistant isolate. However, co-incubation with PB and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant Oberon isolate than with each drug on its own. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action, and only with TCBZ.SO. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.
Resumo:
Enhanced phosphate removal from wastewaters is dependent on the synthesis and intracellular accumulation of polyphosphate by sludge microorganisms. However the role played by polyphosphate in microbial metabolism and the factors that trigger its formation remain poorly-understood. Many examples of the accumulation of the biopolymer by environmental microorganisms are documented; these include a recent report of the presence of large polyphosphate inclusions in sulfur-oxidizing marine bacteria. To investigate whether any link might exist outside the marine environment between the presence of reduced sulfur compounds and enhanced levels of microbial phosphate uptake and polyphosphate accumulation, activated sludge cultures were grown under laboratory conditions in media that contained sulfite, thiosulfate, hydrosulfite or tetrathionate. Only in the presence of sulfite was there any evidence of a stimulatory effect; in medium that contained 0.5 mM sodium sulfite some 17% more phosphate was removed by the sludge, whilst there was an almost two-fold increase in intracellular polyphosphate levels. No indications of sulfite toxicity were observed.
Resumo:
A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP 450) enzyme pathway was inhibited using ketoconazole (KTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP 450 system was inhibited by a 2-h pre-incubation in ketoconazole (40 mu M), then incubated for a further 22 h in NCTC medium containing either KTZ, KTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM), KTZ+NADPH+TCBZ (15 mu g/ml), or KTZ+NADPH+triclabendazole sulphoxide (TCBZ. SO; 15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ. SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with KTZ+TCBZ, but more particularly KTZ+TCBZ. SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own: in the syncytium, for example, there was severe swelling of the basal infolds and their associated mucopolysaccharide masses, accompanied by an accumulation of secretory bodies just below the apex. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis, production, and transport of secretory bodies were badly disrupted. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.
Resumo:
Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media - a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.
Resumo:
Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.
Resumo:
Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.
Resumo:
The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.
Resumo:
The effects of phosphorus (P) status on arsenate reductase gene (OsACR2.1) expression, arsenate reductase activity, hydrogen peroxide (H(2)O(2)) content, and arsenic (As) species in rice seedlings which were exposed to arsenate after -P or +P pretreatments were investigated in a series of hydroponic experiments. OsACR2.1 expression increased significantly with decreasing internal P concentrations; more than 2-fold and 10-fold increases were found after P starvation for 30 h and 14 days, respectively. OsACR2.1 expression exhibited a significant positive correlation with internal root H(2)O(2) accumulation, which increased upon P starvation or exposure to H(2)O(2) without P starvation. Characterization of internal and effluxed As species showed the predominant form of As was arsenate in P-starved rice root, which contrasted with the +P pretreated plants. Additionally, more As was effluxed from P-starved rice roots than from non-starved roots. In summary, an interesting relationship was observed between P-starvation induced H(2)O(2) and OsACR2.1 gene expression. However, the up-regulation of OsACR2.1 did not increase arsenate reduction in P-starved rice seedlings when exposed to arsenate.
Resumo:
Galactose is metabolised to the more metabolically useful glucose 6-phosphate by the enzymes of the Leloir pathway. This pathway is necessary as the initial enzymes of glycolysis are unable to recognise galactose. In most organisms, including Saccharomyces cerevisiae, five enzymes are required to catalyse the conversion: galactose mutarotase, galactokinase, galactose 1-phosphate uridyltransferase, UDP-galactose 4-epimerase and phosphoglucomutase. The pathway has attracted interest in S. cerevisiae as it is under very strict genetic control and thus provides an excellent model for the study of gene expression in eukaryotes. In the presence of glucose the genes encoding the Leloir pathway enzymes (the GAL genes) are completely repressed through the action of a transcription factor Mig1p. Only in the presence of galactose and the absence of glucose do the concerted actions of Gal4p, Gal80p and Gal3p enable the rapid and high level activation of the GAL genes. The exact mechanism of action of these three proteins is controversial. Galactose metabolism in S. cerevisiae is also of interest because it can be exploited both in the laboratory (for high level expression of heterologous proteins and in the yeast two hybrid screen) and industrially (increasing flux through the Leloir pathway in order to make more efficient use of feedstocks with high galactose content). Recent work on the structures of the various proteins, their mechanisms of action and attempts to gain an integrated understanding of transcriptional and metabolic events will assist our understanding of both the fundamental biochemical processes and how these might be exploited commercially.