14 resultados para Phenanthrene.
Resumo:
Bacterial dioxygenase-catalysed cis-dihydroxylation of the tetracyclic arenes benzo[c]phenanthrene 2, and the isosteric compounds benzo[b]naphtho[1,2-d]furan 8, and benzo[b]naphtho[1,2-d]thiophene 9, has been found to occur exclusively at fjord-region bonds. The resulting cis-dihydrodiols 7, 10 and 11 were found to be enantiopure and of similar absolute configuration. cis-Dihydroxylation was also observed in the pseudo-fjord region of the 8,9,10,11-tetrahydro-precursors (12 and 13) of benzo[b]naphtho[1,2-d]furan 8, and benzo[b]naphtho[1,2-d]thiophene 9, to yield the corresponding enantiopure hexahydro cis-diols 14 and 15. A novel tandem cis-dihydroxylation and bis-desaturation of the tetrahydro-substrate, tetrahydrobenzo[b]naphtho[1,2-d]thiophene 13, catalysed by biphenyl dioxygenase, was found to yield the fjord-region cis-dihydrodiol 17 of benzo[b]naphtho[1,2-d]thiophene 9.
Resumo:
The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueous solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.
Resumo:
We compare a suite of Polycyclic Aromatic Hydrocarbons (Parent PAHs) in soils and air across an urban area (Belfast UK). Isomeric PAH ratios suggest that soil PAHs are mainly from a combustion source. Fugacity modelling across a range of soil temperatures predicts that four ring and larger PAHs from pyrene to indeno[1,2,3–cd]pyrene all partition strongly (>98%) to the soil compartment. This modelling also implies that these PAHs do not experience losses through partitioning to other phases (air, water) due to soil temperature effects. Such modelling may help in understanding the overall contaminantdistribution in soils. The air and soil data together with modelling suggests that care must be taken when considering isomeric ratios of compounds with mass lighter than 178 (i.e. phenanthrene and anthracene) in the soil phase. Comparison of duplicate and replicate samples suggest that field sampling of duplicates dominates uncertainty and validated methodologies for selection of field duplicates and lab splitting are required. As the urban soil four ring PAHs are at equilibrium in the soil phase, and have characteristic ratios that are dominated by a combustion source that is a single controlling factor over spatial distribution, methods that calculate background concentrations can be compared.