52 resultados para Phase change material (PCM)
Resumo:
This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.
Resumo:
Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm = 56–58 °C) and low (L-PW, Tm = 18–23 °C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160 °C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220 °C), but above that for L-PW (130 °C), although the decomposition process extended over a range of 120 °C and the residence time of L-PW in the extruder was <30 s. The SSPCMs prepared had latent heats up to 89 J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.
Resumo:
The phase structure evolution of high impact polypropylene copolymer (IPC) during molten-state annealing and its influence on crystallization behaviour were studied. An entirely different architecture of the IPC melt was observed after being annealed, and this architecture resulted in variations of the crystallization behaviour. In addition, it was found that the core-shell structure of the dispersed phase was completely destroyed and the sizes of the dispersed domains increased sharply after being annealed at 200 degrees C for 200 min. Through examination of the coarseness of the phase morphology using phase contrast microscopy (PCM), it was found that a co-continuous structure and an abnormal 'sea-island' structure generally appeared with an increase in annealing time. The original matrix PP component appeared as a dispersed phase, whereas the copolymer components formed a continuous 'sea-island' structure. This change is ascribed to the large tension induced by solidification at the phase interface and the great content difference between the components. When the temperature was reduced the structure reverted to its original form. With increasing annealing time, the spherulite profiles became more defined and the spherulite birefringence changed from vague to clear. Overall crystallization rates and nucleation densities decreased, but the spherulite radial growth rates remained almost constant, indicating that molten-state annealing mainly affects the nucleation ability of IPC, due to a coarsened microstructure and decreased interface area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin lamellae were cut from bulk single crystal BaTiO3 using a Focused Ion Beam Microscope. They were then removed and transferred onto single crystal MgO substrates, so that their functional properties could be measured independent of the original host bulk ferroelectric. The temperature dependence of the capacitance of these isolated single crystal films was found to be strongly bulk-like, demonstrating a sharp Curie anomaly, as well as Curie-Weiss behaviour. In addition, the sudden change in the remanent polarisation as a function of temperature at TC was characteristic of a first order phase change. The work represents a dramatic improvement on that previously published by M. M. Saad, P. Baxter, R. M. Bowman, J. M. Gregg, F. D. Morrison & J. F. Scott, J. Phys: Cond. Matt., 16 L451-L456 (2004), as critical shortcomings in the original specimen geometry, involving potential signal contributions from bulk BaTiO3, have now been obviated. That the functional properties of single crystal thin film lamellae are comparable to bulk, and not like those of conventionally deposited heteroegenous thin film systems, has therefore been confirmed.
Resumo:
In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, rho eta of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (rho eta)(1/2) similar to 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of rho eta agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.
Resumo:
We investigate an optical quantum memory scheme with V-type three-level atoms based on the controlled reversible inhomogeneous broadening (CRIB) technique. We theoretically show the possibility to store and retrieve a weak light pulse interacting with the two optical transitions of the system. This scheme implements a quantum memory for a polarization qubit - a single photon in an arbitrary polarization state - without the need of two spatially separated two-level media, thus offering the advantage of experimental compactness overcoming the limitations due to mismatching and unequal efficiencies that can arise in spatially separated memories. The effects of a relative phase change between the atomic levels, as well as of phase noise due to, for example, the presence of spurious electric and magnetic fields are analyzed.
Resumo:
Objectives: A healthy lifestyle may help maintain cognitive function and reduce the risk of developing dementia. This study employed a focus group approach in order to gain insight into opinions of mild cognitive impairment (MCI) patients, caregivers (CG) and health professionals (HP) regarding lifestyle and its relationship with cognition. The qualitative data were used to design, develop and pilot test educational material (EM) to help encourage lifestyle behaviour change. Method: Data gathering phase: structured interviews were conducted with HP (n = 10), and focus groups with MCI patients (n = 24) and CG (n = 12). EM was developed and pilot tested with a new group of MCI patients (n = 21) and CG (n = 6). Results: HP alluded to the lack of clinical trial evidence for a lifestyle and MCI risk link. Although they felt that lifestyle modifications should be recommended to MCI patients, they appeared hesitant in communicating this information and discussions were often patient-driven. MCI patients lacked awareness of the lifestyle cognition link. Participants preferred EM to be concise, eye-catching and in written format, with personal delivery of information favoured. Most pilot testers approved of the EM but were heterogeneous in terms of lifestyle, willingness to change and support needed to change. Conclusion: MCI patients need to be made more aware of the importance of lifestyle for cognition. EM such as those developed here, which are specifically tailored for this population would be valuable for HP who, currently, appear reticent in initiating lifestyle-related discussions. Following further evaluation, the EM could be used in health promotion activities targeting MCI patients.
Resumo:
In Ireland, the Middle to Late Bronze Age (1500-600 cal. B.C.) is characterised by alternating phases of prolific metalwork production (the Bishopsland and Dowris Phases) and apparent recessions (the Roscommon Phase and the Late Bronze Age-Iron Age transition). In this paper, these changes in material culture are placed in a socio-economic context by examining contemporary settlement and land-use patterns interpreted from the pollen record. The vegetation histories of six tephrochronologically-linked sites are presented that provide high-resolution and chronologically well-resolved insights into changes in landscape use over the Middle to Late Bronze Age. The records are compared with published pollen records in an attempt to discern if there are any trends of woodland clearance and abandonment from which changes in settlement patterns can be inferred. The results suggest that prolific metalworking industries correlate chronologically with expansive farming activity, which indicates that they were supported by a productive subsistence economy. Conversely, declines in metalwork production occur during periods when farming activity is generally less extensive and perhaps more centralised, and it is proposed that disparate socio-economic or –political factors, rather than a collapse of the subsistence economy, lies behind the demise of metalworking industries.
Resumo:
This work combines microscopy, synchrotron radiation X-ray diffraction, differential scanning calorimetry and thermodynamic calculations in the characterisation of phase transformation behaviour of a Ti–46Al–1.9Cr–3Nb alloy upon continuous heating at constant rates. It has been found that the Ti–46Al–1.9Cr–3Nb alloy after being forged at 1200 °C without further treatment has a duplex microstructure consisting of fine equiaxed and lamellar ? grains with a small amount of a2 plates and particles and about 1 wt.% B2 phase. Differential scanning calorimetry revealed reproducibly several thermal effects upon heating of the as-forged alloy. These thermal effects are related to the equilibration and homogenisation of the sample, change of phase ratios between a2, ? and B2 phases in particular the increase of B2 in respect to a2 and ?, and the following five phase transformations: a2 + ? + B2 a + ? + B2, a + ? + B2 a + ?, ? + a a, a a + ß, a + ß a + ß + L. The observation of these transformations by differential scanning calorimetry is largely in agreement with literature phase diagrams and thermodynamic calculations, though care is needed to consider the different alloy compositions. Kinetics of the ? + a a phase transformation in the Ti–46Al–1.9Cr–3Nb alloy has been quantitatively derived from the calorimetry data, giving phase compositions at any point during the transformation upon continuous heating.
Resumo:
In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.
Resumo:
Results of a fossil Coleoptera (beetle) fauna from a fen edge sequence from Hatfield Moors, Humberhead Levels, are presented. Mire ontogeny inferred from this location and others are discussed, particularly in the light of previous palynological and plant macrofossil investigations. Peat initiation across most of the site centres around 3000 cal BC, characterised by a Calluna-Eriophorum heath with areas of Pinus-Betula woodland. The onset of peat accumulation on the southern margins of the site was delayed until 1520-1390 cal BC and appears to overlap closely with a recurrence surface at a pollen site (HAT 2) studied by Brian Smith (1985, 2002) dated to 1610-1440 cal BC, suggesting that increased surface wetness may have caused mire expansion at this time. The faunas illustrate the transition from eutrophic and mesotrophic fen to ombrotrophic raised mire, although the significance of both Pinus- and Calluna-indicating species through the sequence suggests that heath habitats may have continued to be important. Elsewhere, this earlier phase of rich fen is lacking and mesotrophic mire developed immediately above nutrient poor sands, with ombrotrophic conditions indicated soon after. Correspondence analysis of the faunas provides valuable insights into the importance of sandy heath habitats on Hatfield Moors. The continuing influence of the underlying coversands suggests these may have been instrumental in mire ontogeny. The research highlights the usefulness of using Coleoptera to assess mire ontogeny, fluctuations in site hydrology and vegetation cover, particularly when used in conjunction with other peatland proxies. The significance of a suite of extinct beetle species is discussed with reference to forest history and climate change.
Resumo:
19 B-type stars, selected from the Palomar-Green Survey, have been observed at infrared wavelengths to search for possible infrared excesses, as part of an ongoing programme to investigate the nature of early-type stars at high Galactic latitudes. The resulting infrared fluxes, along with Stromgren photometry, are compared with theoretical flux profiles to determine whether any of the targets show evidence of circumstellar material, which may be indicative of post-main- sequence evolution. Eighteen of the targets have flux distributions in good agreement with theoretical predictions. However, one star, PG 2120 + 062, shows a small near-infrared excess, which may be due either to a cool companion of spectral type F5-F7, or to circumstellar material, indicating that it may be an evolved object such as a post-asymptotic giant branch star, in the transition region between the asymptotic giant branch and planetary nebula phase, with the infrared excess due to recent mass loss during giant branch evolution.