30 resultados para Phase Shift
Resumo:
This letter gives the first report of a planar phase plate structure based on frequency selective surface (FSS) technology for the generation of helical far-field radiation patterns with circular polarization properties.The unit cell of the structure comprises two orthogonal split-ring resonators designed to ensure 180$^{\circ}$ phase shift between orthogonal transmission coefficients. This property is exploited to obtain progressive rotational phase shift within the structure and thus synthesize 360$^{\circ}$ spiral phase profile. Measured far-field radiation patterns demonstrate spiral phase front generation for 10-GHz circularly polarized waves transmitted through the structure.
Resumo:
The measured angular differential cross section (DCS) for the elastic scattering of electrons from Ar+(3s2 3p5 2P) at the collision energy of 16 eV is presented. By solving the Hartree-Fock equations, we calculate the corresponding theoretical DCS including the coupling between the orbital angular momenta and spin of the incident electron and those of the target ion and also relaxation effects. Since the collision energy is above one inelastic threshold for the transition 3s2 3p5 2P–3s 3p6 2S, we consider the effects on the DCS of inelastic absorption processes and elastic resonances. The measurements deviate significantly from the Rutherford cross section over the full angular range observed, especially in the region of a deep minimum centered at approximately 75°. Our theory and an uncoupled, unrelaxed method using a local, spherically symmetric potential by Manson [Phys. Rev. 182, 97 (1969)] both reproduce the overall shape of the measured DCS, although the coupled Hartree-Fock approach describes the depth of the minimum more accurately. The minimum is shallower in the present theory owing to our lower average value for the d-wave non-Coulomb phase shift s2, which is due to the high sensitivity of s2 to the different scattering potentials used in the two models. The present measurements and calculations therefore show the importance of including coupling and relaxation effects when accurately modeling electron-ion collisions. The phase shifts obtained by fitting to the measurements are compared with the values of Manson and the present method.
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
The design, construction and measured performance is described of an offset parabolic reflector antenna which employs a reflectarray subreflector to tilt the focused beam from the boresight direction at 94 GHz. An analysis technique based on the method of moments (MoM) is used to design the dual-reflector antenna. Numerical simulations were employed to demonstrate that the high gain pattern of the antenna can be tilted to a predetermined angle by introducing a progressive phase shift across the aperture of the reflectarray. Experimental validation of the approach was made by constructing a 28 × 28 element patch reflectarray which was designed to deflect the beam 5° from the boresight direction in the azimuth plane. The array was printed on a 115 µm thick metal backed quartz wafer and the radiation patterns of the dual reflector antenna were measured from 92.6-95.5 GHz. The experimental results are used to validate the analysis technique by comparing the radiation patterns and the reduction in the peak gain due to beam deflection from the boresight direction. Moreover the results demonstrate that this design concept can be developed further to create an electronically scanned dual reflector antenna by using a tunable reflectarray subreflector.
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.
Resumo:
A simple linear precoding technique is proposed for multiple input multiple output (MIMO) broadcast systems using phase shift keying (PSK) modulation. The proposed technique is based on the fact that, on an instantaneous basis, the interference between spatial links in a MIMO system can be constructive and can contribute to the power of the useful signal to improve the performance of signal detection. In MIMO downlinks this co-channel interference (CCI) can be predicted and characterised prior to transmission. Contrary to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to influence the interference and benefit from it, thus gaining advantage from energy already existing in the communication system that is left unexploited otherwise. The proposed precoding aims at adaptively rotating, rather than zeroing, the correlation between the MIMO substreams depending on the transmitted data, so that the signal of interfering transmissions is aligned to the signal of interest at each receive antenna. By doing so, the CCI is always kept constructive and the received signal to interference-plus-noise ratio (SINR) delivered to the mobile units (MUs) is enhanced without the need to invest additional signal power per transmitted symbol at the MIMO base station (BS). It is shown by means of theoretical analysis and simulations that the proposed MIMO precoding technique offers significant performance and throughput gains compared to its conventional counterparts.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Resumo:
This paper proposes a hybrid transmission technique based on adaptive code-to-user allocation and linear precoding for the downlink of phase shift keying (PSK) based multi-carrier code division multiple access (MC-CDMA) systems. The proposed scheme is based on the separation of the instantaneous multiple access interference (MAI) into constructive and destructive components taking into account the dependency on both the channel variation and the instantaneous symbol values of the active users. The first stage of the proposed technique is to adaptively distribute the available spreading sequences to the users on a symbol-by-symbol basis in the form of codehopping with the objective to steer the users' instantaneous crosscorrelations to yield a favourable constructive to destructive MAI ratio. The second stage is to employ a partial transmitter based zero forcing (ZF) scheme specifically designed for the exploitation of constructive MAI. The partial ZF processing decorrelates destructive interferers, while users that interfere constructively remain correlated. This results in a signal to interference-plus-noise ratio (SINR) enhancement without the need for additional power-per-user investment. It will be shown in the results section that significant bit error rate (BER) performance benefits can be achieved with this technique.
Resumo:
Previous studies using low frequency (1 Hz) rTMS over the motor and premotor cortex have examined repetitive movements, but focused either on motor aspects of performance such as movement speed, or on variability of the produced intervals. A novel question is whether TMS affects the synchronization of repetitive movements with an external cue (sensorimotor synchronization). In the present study participants synchronized finger taps with the tones of an auditory metronome. The aim of the study was to examine whether motor and premotor cortical inhibition induced by rTMS affects timing aspects of synchronization performance such as the coupling between the tap and the tone and error correction after a metronome perturbation. Metronome sequences included perturbations corresponding to a change in the duration of a single interval (phase shifts) that were either small and below the threshold for conscious perception (10 ms) or large and perceivable (50 ms). Both premotor and motor cortex stimulation induced inhibition, as reflected in a lengthening of the silent period. Neither motor nor premotor cortex rTMS altered error correction after a phase shift. However, motor cortex stimulation made participants tap closer to the tone, yielding a decrease in tap-tone asynchrony. This provides the first neurophysiological demonstration of a dissociation between error correction and tap-tone asynchrony in sensorimotor synchronization. We discuss the results in terms of current theories of timing and error correction.
Resumo:
We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range of 130–440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun’s outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magnetohydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upward along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65–220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modi?cation is a direct consequence of the 90? phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy ?ux of these waves are estimated to be ˜3 × 105 W m-2, which indicates that they are suf?ciently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.
Resumo:
The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.
Resumo:
Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality images are dealt with. We present a novel procedure for a phase-shift map computation that makes extensive use of the ridge extraction in the continuous wavelet transform (CWT) framework. The CWT tool is flexible because of the wide adaptability of the analyzing basis, and it can be accurate because of the intrinsic noise reduction in the ridge extraction. A comparative analysis of the accuracy performances of them new tool and the FFT-based one shows that the CWT-based tool produces phase maps considerably less noisy and that it can better resolve local inhomogeneties. (C) 2001 Optical Society of America.