30 resultados para Phase Equilibria


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports both the binary and ternary phase behavior of ionic liquids for extracting cyclohexanecarboxylic acid (CCA) from dodecane. This system is a model for the extraction of acids representative of naphthenic acids found in crude oils. In order to develop an effective ternary liquid-liquid extraction system the preliminary selection of ionic liquids was based on CCA miscibility and the dodecane immiscibility with selected ILs. A wide range of ILs based on different cations, anions, cation alkyl-chain length, as well as the effect of temperature on the overall fluid phase behavior is reported. Factors such as variation of cation group, anion effect, alkyl-chain length, and temperature all impact the extraction to various degrees. The largest effects were found to be the lipophilicity of the IL cation and the co-ordination ability of the anion. While CCA capacity increased with lipophilicity of the cation, as did the dodecane. Highly coordinating anions such as trifluoroacetate and triflate demonstrated that highly efficient extraction could be obtained producing favorable tie-lines in the ternary phase diagram. Overall, this study demonstrates that ILs can selectively extract acids from hydrocarbon streams and offers possible treatment solutions for problems associated with the processing of high acid crude oils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Liquid-liquid equilibria of two ternary mixtures 2M1B-2M1BOH-H[2]O] and 2M2B-2M1BOH-H[2]O were measured at 5, 15 and 25 C. UNIQUAC and NRTL models were fitted to the experimental data using ASPEN PLUS. Both experimental and correlated values of equilibrium compositions were compared with the values predicted by UNIFAC method. The same procedure was extended to the quaternary mixture 2M1B-2M2B-2M 1BOH-H[2]O. The regressed results were in good agreements with experimental data. Original UNIFAC model performed better representation than Dortmund UNIFAC model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isentropic compressibilities ?S, and excess isentropic compressibilities ?SE have been determined from measurements of speeds of sound u and densities ? of 14 binary mixtures of triethylamine (TEA) and tri-n-butylamine (TBA) with n-hexane, n-octane, iso-octane, n-propylamine, n-butylamine, n-hexylamine and n-octylamine. The relative magnitude and sign of ?SE have been interpreted in terms of molecular interactions and interstitial accommodation. The values of ?SE for TEA + alkane are positive while for TBA + alkane are negative. The values of ?SE for TEA + primary amine become progressively less positive and eventually to negative with the increase in chain length of alkylamine. In case of TBA + primary amine, the values of ?SE increase from n-propylamine to n-butylamine, and then decrease with chain length of primary amine. The experimental speeds of sound u have been analyzed in terms of collision factor theory, free length theory and Prigogine–Flory–Patterson statistical theory of solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extension of the Ye and Shreeve group contribution method [C. Ye, J.M. Shreeve, J. Phys. Chem. A 111 (2007) 1456–1461] for the estimation of densities of ionic liquids (ILs) is here proposed. The new version here presented allows the estimation of densities of ionic liquids in wide ranges of temperature and pressure using the previously proposed parameter table. Coefficients of new density correlation proposed were estimated using experimental densities of nine imidazolium-based ionic liquids. The new density correlation was tested against experimental densities available in literature for ionic liquids based on imidazolium, pyridinium, pyrrolidinium and phosphonium cations. Predicted densities are in good agreement with experimental literature data in a wide range of temperatures (273.15–393.15 K) and pressures (0.10–100 MPa). For imidazolium-based ILs, the mean percent deviation (MPD) is 0.45% and 1.49% for phosphonium-based ILs. A low MPD ranging from 0.41% to 1.57% was also observed for pyridinium and pyrrolidinium-based ILs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on experimental viscosity data collected from the literature and using density data obtained from a predictive method previously proposed by the authors, a group contribution method is proposed to estimate viscosity of imidazolium-, pyridinium-, and pyrrolidinium-based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulfonyl) amide (Tf2N), chloride (Cl), acetate (CH3COO), methyl sulfate (MeSO4), ethyl sulfate (EtSO4), and trifluoromethanesulfonate (CF3SO3) anions, covering wide ranges of temperature, 293–393 K and viscosity, 4–21,000 cP. It is shown that a good agreement with literature data is obtained. For circa 500 data points of 29 ILs studied, a mean percent deviation (MPD) of 7.7% with a maximum deviation smaller than 28% was observed. 71.1% of the estimated viscosities present deviations smaller than 10% of the experimental values while only 6.4% have deviations larger than 20%. The group contribution method here developed can thus be used to evaluate the viscosity of new ionic liquids in wide ranges of temperatures at atmospheric pressure and, as data for new groups of cations and anions became available, can be extended to a larger range of ionic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The limited availability of experimental data and their quality have been preventing the development of predictive methods and Computer Aided Molecular Design (CAMD) of ionic liquids (ILs). Based on experimental speed of sound data collected from the literature, the inter-relationship of surface tension (s), density (?), and speed of sound (u) has been examined for imidazolium based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulphonyl) amide (NTf2), methyl sulphate (MeSO4), ethyl sulphate (EtSO4), and trifluoromethanesulphonate (CF3SO3) anions, covering wide ranges of temperature, 278.15–343.15 K and speed of sound, 1129.0–1851.0 m s-1. The speed of sound was correlated with a modified Auerbach's relation, by using surface tension and density data obtained from volume based predictive methods previously proposed by the authors. It is shown that a good agreement with literature data is obtained. For 133 data points of 14 ILs studied a mean percent deviation (MPD) of 1.96% with a maximum deviation inferior to 5% was observed. The correlations developed here can thus be used to evaluate the speeds of sound of new ionic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids have received significant interest from both academia and industry for a wide range of applications which often requires knowledge of their thermophysical properties. Quantitative structure-property relationship correlations and group contribution methods for thermophysical properties of ionic liquids are a basic necessity for the development of computer aided molecular design approaches for these liquids and subsequently offer the potential for designing an ionic liquid having a desirable set of thermophysical properties. However, the limited availability of experimental thermophysical data and their quality have prevented the development of such tools. Based on previously reported experimental surface tension data, a correlation of the parachors with the molar volume of the ionic liquids has been developed. The predicted parachor values have been shown to be in good agreement with the experimental data. A maximum deviation of

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interfacial tension of the liquid-liquid phase boundary of several 1,3-dialkyl imidazolium based ionic liquids, namely, 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(1)mim][NTf2], 1-ethyl-3-methylimidazoliurn bis{(trifluoromethyl)sulfonyl}imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(4)mim][NTf2], 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(6)mim][NTf2], 1-octyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(8)mim][NTf2], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][CF3SO3], and 1-butyl-3-methylimidazolium trifluoroacetate [C(4)mim][CF3COO] with water and with the n-alkanes, n-hexane, n-octane and n-decane, has been measured using the pendant drop method as a function of temperature from 293 to 323 K. The experimental interfacial tension data were correlated using the ionic liquid parachor estimation method and a mutual solubility model. The influence of the cation and anion of ionic liquids and also of alkyl chain length of n-alkanes on interfacial tension is discussed. It has also been demonstrated that the interfacial tension data estimated by the correlation methods are in good agreement with the experimental data. (C) 2010 Elsevier B.V. All rights reserved.