21 resultados para Pesticides , fungicides , dithiocarbamates, ethylenethiourea ( ETU )


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed mussels (Mytilus edulis) were exposed to a range of pesticides and PCBs, several of which caused a reduction in byssal attachment at higher concentrations. In queen scallops (Chlamys opercularis) byssus formation was similarly affected although this species was more sensitive than M. edulis. The sensitivity of mussels was greater at higher temperatures and decreased with increase in size. Of the compounds tested Endosulfan (organochlorine) was the most toxic, causing a 50% reduction in byssal attachment after 24 h at 0â¢45 mg/l. Trichlorphon (organophosphate) was the least toxic and did not affect byssal attachment at concentrations up to 30 mg/l. The probable cause of decreased byssal attachment is a reduction in pedal activity, although it is possible that direct interference with the synthesis or combination of byssus components may be involved. It is suggested that byssogenesis tests offer a rapid and convenient technique for the routine screening of potential marine pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-phase extraction (SPE) and direct competitive chemiluminescence enzyme immunoassay (dcCL-EIA) were combined for the detection of organophosphorus pesticides (OPs) in environmental water samples. dcCL-EIA based on horseradish peroxidase labeled with a broad-specificity monoclonal antibody against OPs was developed, and the effects of several physicochemical parameters on dcCL-EIA performance were studied. SPE was used for the pretreatment of water samples to remove interfering substances and to concentrate the OP analytes. The coupling of SPE and dcCL-EIA can detect seven OPs (parathion, coumaphos, phoxim, quinalphos, triazophos, dichlofenthion, and azinphos-ethyl) with the limit of quantitation below 0.1 ng/mL. The recoveries of OPs from spiked water samples ranged from 62.5% to 131.7% by SPE-dcCL-EIA and 69.5% to 112.3% by SPE-HPLC-MS/MS. The screening of OP residues in real-world environmental water samples by the developed SPE-dcCL-EIA and their confirmatory analysis using SPE-HPLC-MS/MS demonstrated that the assay is ideally suited as a monitoring method for OP residues prior to chromatographic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorinated hydrocarbon pesticides are now present in low concentration in most waters. While generally not causing direct mortality so far as we know, they may well have sub-lethal effects, reducing the health and viability of marine organisms. In this study the effect of Endosulfan, DDT and dieldrin on respiration, heart beat and burrowing of some marine bivalves has been examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including 'Colony Collapse Disorder' and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e. g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, tau-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North-and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of Helminthosporium solani, the cause of silver scurf in potato tubers, has been impaired by selection of benzimidazole-resistant strains as a result of repeated use of the fungicide thiabendazole. Identification of thiabendazole-resistant strains of H. solani by conventional techniques takes several weeks. Primers designed from conserved regions of the fungal beta-tubulin gene were used to PCR amplify and sequence a portion of the gene. A point mutation was detected at codon 198 in thiabendazole-resistant isolates causing a change in the amino acid sequence from glutamic acid to alanine or glutamine. Species-specific PCR primers designed to amplify this region were used in conjunction with a restriction endonuclease to cause cleavage in sensitive isolates only and thus provide a rapid diagnostic test to differentiate field isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cladobotryutn dendroides, causal agent of cobweb disease of Agaricus bisporus, has become increasingly resistant to methylbenzimidazole carbamate (MBC) fungicides following the extensive use of MBC in cultivated mushroom production in Ireland. Of 38 isolates of C. dendroides obtained from Irish mushroom units, 34 were resistant to carbendazim. Primers based on conserved regions of the -tubulin gene were used to amplify and sequence a portion of the -tubulin gene in C. dendroides. A point mutation was detected at codon 50 in isolates resistant to benzimidazole fungicides, causing an amino acid substitution from tyrosine to cysteine. Species-specific PCR primers were designed to amplify the region of the -tubulin gene containing this substitution. The point mutation removed an Ace I restriction site in the -tubulin gene sequence of resistant isolates. Digestion of the PCR product with Ace I thus provides a rapid diagnostic test to differentiate sensitive and resistant isolates of this fungus. EMBL accession number: YI2256.