166 resultados para Pesticide residues in food
Resumo:
When most people think of food safety they think of food poisoning and bacteria. They also, one hopes, generally follow the well-understood public advice on bacterial risks and store their food properly and cook it thoroughly. But what about chemical risks in food? Do many consumers ask the question “if drug residues are in my food, does cooking make it safe?” Or do they assume that following the good advice on bacterial risks also affords some protection against the health risks of chemical contaminants? In this short report we highlight some difficulties in assessing the stability of veterinary drug residues during cooking and summarise our cooking studies on anthelmintics, nitroimidazoles and nitrofuran residues in various foods. safefood Knowledge Networks http://safefood.ning.com/
Resumo:
Anthelmintic drugs are widely used to control parasitic infections in cattle. The ProSafeBeef project addressed the need for data on the exposure of European consumers of beef to potentially harmful drug residues. A novel analytical method based on matrix solid-phase dispersive extraction and ultra-performance liquid chromatography-tandem mass spectrometry was validated for 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, = 0.15-10.2 µg kg -1). Seven European countries (France, Spain, Slovenia, Ireland, Italy, Belgium and Portugal) participated in a survey of retail beef purchased in local shops. Of 1061 beef samples analysed, 26 (2.45%) contained detectable residues of anthelmintic drugs (0.2-171 µg kg -1), none above its European Union maximum residue limit (MRL) or action level. Residues detected included closantel, levamisole, doramectin, eprinomectin, moxidectin, ivermectin, albendazole and rafoxanide. In a risk assessment applied to mean residue concentrations across all samples, observed residues accounted for less than 0.1% of the MRL for each compound. An exposure assessment based on the consumption of meat at the 99th percentile of consumption of adults in 14 European countries demonstrated that beef accounted for less than 0.02% of the acceptable daily intake for each compound in each country. This study is the first of its kind to apply such a risk-based approach to an extensive multi-residue survey of veterinary drug residues in food. It has demonstrated that the risk of exposure of the European consumer to anthelmintic drug residues in beef is negligible, indicating that regulation and monitoring is having the desired effect of limiting residues to non-hazardous concentrations. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.
Resumo:
Residues of veterinary medicines are a food safety issue regulated by European legislation. The occurrence of animal diseases necessitating application of veterinary medicines is significantly affected by global and local climate changes. This review assesses potential impacts of climate change on residues in food produced on the island of Ireland. Use of various classes of veterinary drugs in light of predicted local climate change is reviewed with particular emphasis on anthelmintic drugs and consideration is given to residues accumulating in the environment. Veterinary medicine use is predicted to increase as disease burdens increase due to varied climate effects. Locally relevant mitigation and adaptation strategies are suggested to ensure climate change does not adversely affect food safety via increasing drug residues.
Resumo:
An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.
Resumo:
Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position.
Resumo:
Subjective risks of having contaminated apples elicited via the Exchangeability Method (EM) are examined in this study. In particular, as the experimental design allows us to investigate the validity of elicited risk measures, we examine the magnitude of differences between valid and invalid observations. In addition, using an econometric model, we also explore the effect of consumers’ socioeconomic status and attitudes toward food safety on subjects’ perceptions of pesticide residues in apples. Results suggest first, that consumers do not expect an increase in the number of apples containing only one pesticide residue, but, rather, in the number of those apples with traces of multiple residues. Second, we find that valid subjective risk measures do not significantly diverge from invalid ones, indicative of little effect of internal validity on the actual magnitude of subjective risks. Finally, we show that subjective risks depend on age, education, a subject’s ties to the apple industry, and consumer association membership.
Resumo:
The farm production of silage as a winter-feed supplement is widespread. However, the bins in which silage is produced are subject to acidic and microbial attacks. Both these types of attack can lead to a weakening and failure of the concretes, especially on the outer lip of the open side of the silage pit. Consequently, the development of an acid-resistant concrete that can extend the life span of silage bins on farms could lead to considerable cost savings for farmers and, hence, can improve farm productivity. This paper reports on test results of an investigation into the behaviour of concrete containing seawater-neutralised bauxite refinery residues (Bauxsol™) exposed to sulphuric acid environments in the laboratory and to silage effluents. The concrete manufactured had a fixed water–cement ratio of 0.55 and natural sand was replaced with the Bauxsol™ at 0%, 5%, 10%, 15% and 20% by cement mass. Results indicated that the use of Bauxsol™ as a sand replacement material improved the behaviour of concrete both in sulphuric acid in the laboratory as well as in the silage effluent. Consequently, it is concluded that the Bauxsol™ can be used to replace 10% of natural sand to produce concrete that is resistant to silage effluents, providing an extended service life over conventional concretes used in silage pits.
Resumo:
Biosensors are used for a large number of applications within biotechnology, including the pharmaceutical industry and life sciences. Since the production of Biacore surface-plasmon resonance instruments in the early 1990s, there has been steadily growing use of this technology for the detection of food contaminants (e.g., veterinary drugs, mycotoxins, marine toxins, food dyes and processing contaminants). Other biosensing technologies (e.g., electrochemical and piezoelectric) have also been employed for the analysis of small-molecule contaminants. This review concentrates on recent advances made in detection and quantification of antimicrobial compounds with different types of biosensors and on the emergence of multiplexing, which is highly desirable as it increases sample analysis at lower cost and in less time. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A survey was carried out on the occurrence of dinitrocarbanilide (DNC), the marker residue for nicarbazin, in poultry produced in Ireland during 2002-2004. Liver (n = 736) and breast muscle samples (n = 342) were tested. DNC residues were found in 40 and 26% of liver and breast muscle samples at levels greater than 12.5 and 5 mu g kg(-1), respectively. DNC residues were found at >200 mu g kg(-1) in 12 and 0% of liver and muscle samples, respectively. Samples of breast muscle (n = 217) imported from 11 countries were also tested for DNC residues. A lower incidence of DNC residues (6%) was found in imported breast muscle. Egg samples (n = 546) were tested and DNC residues were found in nine samples, with levels ranging between 14 and 122 mu g kg(-1). Analysis of poultry, carried out as part of official food inspection in the period 2004-2006, indicated a reduction in the number of broiler liver samples containing DNC at >200 mu g kg(-1), to approximately 7%. Low levels of DNC residues continue to be found in
Resumo:
Regulatory authorities, the food industry and the consumer demand reliable determination of chemical contaminants present in foods. A relatively new analytical technique that addresses this need is an immunobiosensor based on surface plasmon resonance (SPR) measurements. Although a range of tests have been developed to measure residues in milk, meat, animal bile and honey, a considerable problem has been encountered with both serum and plasma samples. The high degree of non-specific binding of some sample components can lead to loss of assay robustness, increased rates of false positives and general loss of assay sensitivity. In this paper we describe a straightforward precipitation technique to remove interfering substances from serum samples to be analysed for veterinary anthelmintics by SPR. This technique enabled development of an assay to detect a wide range of benzimidazole residues in serum samples by immunobiosensor. The limit of quantification was below 5 ng/ml and coefficients of variation were about 2%.
Resumo:
The development of an assay for the detection of streptomycin residues in pasteurized whole milk using an optical biosensor (Biacore) is reported. Streptomycin-adipic hydrazide coupled to bovine thyroglobulin was used to produce a sheep polyclonal antibody. The antibody displayed excellent cross-reactivity with dihydrostreptomycin (106%). There was no significant cross-reaction with other aminoglycosides or common antibiotics. Streptomycin was also immobilized onto a CM5 sensor chip to provide a stable, reusable surface. The developed assay permitted the direct analysis of whole milk samples (similar to3.5% fat) without prior centrifugation and defatting. Results were available in 5 min. The limit of detection of the assay was determined as 4.1 ng/mL, well below the European maximum residue limit (MRL) of 200 ng/mL. Repeatability (or coefficient of variation) between runs was determined as 3.5% (100 ng/mL; 0.5 x MRL), 5.7% (200 ng/mL; MRL), and 7.6% (400 ng/mL; 2 x MRL).
Resumo:
Ivermectin, a member of the avermectin group, is frequently used to control parasites in many food producing animal species. A method for the detection and quantification of ivermectin residues in bovine liver has been developed. Liver samples (4 g) were extracted with acetonitrile and applied to a competitive enzyme immunoassay using a polyclonal antiserum raised in rabbits against an ivermectin-transferrin conjugate, The limit of detection of the assay (mean +/- 3s) calculated from the analysis of 24 known negative samples was 1.6 ng g(-1), Intra- and inter-assay RSDs were determined as 8.8 and 14.6%, respectively, using a negative bovine liver sample fortified with 100 ng g(-1) of ivermectin. Four Friesian steers were treated with a pour-on application of ivermectin at a dose rate of 0.5 mg kg(-1) body mass then withdrawn and killed at 7, 14, 21 and 28 d, Livers mere removed and ivermectin residue concentrations determined using the proposed immunoassay procedure, Seven days post-treatment the ivermectin liver concentration was determined as 52.7 ng g(-1), decreasing to 4.1 ng(-1) at 28 d, All immunoassay results were confirmed using high-performance liquid chromatography (HPLC), The immunoassay and HPLC results for invermectin ranged from 1 to 58 ng g(-1) and were in close correlation (r = 0.99).