7 resultados para Perth Amboy


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continued use of traditional lecturing across Higher Education as the main teaching and learning approach in many disciplines must be challenged. An increasing number of studies suggest that this approach, compared to more active learning methods, is the least effective. In counterargument, the use of traditional lectures are often justified as necessary given a large student population. By analysing the implementation of a web based broadcasting approach which replaced the traditional lecture within a programming-based module, and thereby removed the student population rationale, it was hoped that the student learning experience would become more active and ultimately enhance learning on the module. The implemented model replaces the traditional approach of students attending an on-campus lecture theatre with a web-based live broadcast approach that focuses on students being active learners rather than passive recipients. Students ‘attend’ by viewing a live broadcast of the lecturer, presented as a talking head, and the lecturer’s desktop, via a web browser. Video and audio communication is primarily from tutor to students, with text-based comments used to provide communication from students to tutor. This approach promotes active learning by allowing student to perform activities on their own computer rather than the passive viewing and listening common encountered in large lecture classes. By analysing this approach over two years (n = 234 students) results indicate that 89.6% of students rated the approach as offering a highly positive learning experience. Comparing student performance across three academic years also indicates a positive change. A small data analytic analysis was conducted into student participation levels and suggests that the student cohort's willingness to engage with the broadcast lectures material is high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A potentially powerful drive-by bridge inspection approach was proposed to inspect bridge conditions utilizing the vibrations of a test vehicle while it passes over the target bridge. This approach suffers from the effect of roadway surface roughness and two solutions were proposed in previous studies: one is to subtract the responses of two vehicles (time-domain method) before spectral analysis and the other one is to subtract the spectrum of one vehicle from that of the other (frequency-domain method). Although the two methods were verified theoretically and numerically, their practical effectiveness is still an open question.Furthermore, whether the outcome spectra processed by those methods could be used to detect potential bridge damage is of our interests. In this study, a laboratory experiment was carried out with a test tractor-trailer system and a scaled bridge. It was observed that, first, for practical applications, it would be preferable to apply the frequency-domain method, avoiding the need to meet a strict requirement in synchronizing the responses of the two trailers in time domain; second, the statistical pattern of the processed spectra in a specific frequency band could be an effective anomaly indicator incorporated in drive-by inspection methods.