196 resultados para Periodic waves
Resumo:
Channelled waves in 2-D periodic anisotropic L-C mesh metamaterials have been investigated. Circuit simulation and the newly developed analytical model of a unit cell have demonstrated full qualitative agreement for both lossless and lossy cases. Isofrequencies for a lattice unit cell and the circuit simulations of finite meshes have shown that propagating waves are channelled from a point source as pencil beams which can travel only along specific trajectories. The beam direction varies with frequency, and at the resonance frequency, the phase and group velocities of the travelling wave are orthogonal. The effect of losses was explored, and it was shown that losses cause qualitative changes of the channelled wave type. It was proven that the channelled waves do not follow the laws of geometrical optics (Snell's law, specular reflection, etc.) at the interfaces of L-C meshes but are governed by the conditions of phase synchronism and impedance matching. Only in the special case of dual L-C and C-L meshes with the interface parallel to the axis of rectangular grid excited at the resonance frequency (X=1) do the channels follow the trajectories of optical rays. A planar mesh test cell has been designed and used for retrieving the unit cell L-C parameters from the S-parameter measurements.
Resumo:
High time resolution observations of a white-light flare on the active star EQ PegB show evidence of intensity variations with a period of ≈10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively-excited, standing-acoustic wave in a flare loop, the period implies a loop length of ≈3.4 Mm and ≈6.8 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast-MHD wave, with the modulation of the emission being due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e., periodic reconnection).
Resumo:
Optical transmission of a two-dimensional array of subwavelength holes in a metal film has been numerically studied using a differential method. Transmission spectra have been calculated showing a significant increase of the transmission in certain spectral ranges corresponding to the excitation of the surface polariton Bloch waves on a metal surface with a periodic hole structure. Under the enhanced transmission conditions, the near-field distribution of the transmitted light reveals an intensity enhancement greater than 2 orders of magnitude in localized (similar to 40 nm) spots resulting from the interference of the surface polaritons Bragg scattered by the holes in an array.
Resumo:
Anisotropic metamaterials composed of 2D periodic infi- nite and finite periodic lattices of lumped inductor (L) and capacitor (C) circuits have been explored. The unique features of wave channeling on such anisotropic lattices and scattering at their interfaces and edges are reviewed and illustrated by the examples of the specific arrangements. The lattice unit cells composed of inductors and capacitors (basic mesh) as well as of assemblies comprised of double series, double parallel, and mixed parallel-series L-C circuits are discussed.
Resumo:
A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.
Resumo:
A method is proposed to accelerate the evaluation of the Green's function of an infinite double periodic array of thin wire antennas. The method is based on the expansion of the Green's function into series corresponding to the propagating and evanescent waves and the use of Poisson and Kummer transformations enhanced with the analytic summation of the slowly convergent asymptotic terms. Unlike existing techniques the procedure reported here provides uniform convergence regardless of the geometrical parameters of the problem or plane wave excitation wavelength. In addition, it is numerically stable and does not require numerical integration or internal tuning parameters, since all necessary series are directly calculated in terms of analytical functions. This means that for nonlinear problem scenarios that the algorithm can be deployed without run time intervention or recursive adjustment within a harmonic balance engine. Numerical examples are provided to illustrate the efficiency and accuracy of the developed approach as compared with the Ewald method for which these classes of problems requires run time splitting parameter adaptation.
Resumo:
The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined. The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures. © 2012 O. V. Shramkova and A. G. Schuchinsky.
Resumo:
Hemispherical electron plasma waves generated from ultraintense laser interacting with a solid target having a subcritical preplasma is studied using particle-in-cell simulation. As the laser pulse propagates inside the preplasma, it becomes self-focused due to the response of the plasma electrons to the ponderomotive force. The electrons are mainly heated via betatron resonance absorption and their thermal energy can become higher than the ponderomotive energy. The hot electrons easily penetrate through the thin solid target and appear behind it as periodic hemispherical shell-like layers separated by the laser wavelength.
Resumo:
Three-wave mixing in quasi-periodic structures (QPSs) composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG). The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Resumo:
Linearly polarized solitary waves, arising from the interaction of an intense laser pulse with a plasma, are investigated. Localized structures, in the form of exact numerical nonlinear solutions of the one-dimensional Maxwell-fluid model for a cold plasma with fixed ions, are presented. Unlike stationary circularly polarized solitary waves, the linear polarization gives rise to a breather-type behavior and a periodic exchange of electromagnetic energy and electron kinetic energy at twice the frequency of the wave. A numerical method based on a finite-differences scheme allows us to compute a branch of solutions within the frequency range Ωmin<Ω<ωpe, where ωpe and Ωmin are the electron plasma frequency and the frequency value for which the plasma density vanishes locally, respectively. A detailed description of the spatiotemporal structure of the waves and their main properties as a function of Ω is presented. Small-amplitude oscillations appearing in the tail of the solitary waves, a consequence of the linear polarization and harmonic excitation, are explained with the aid of the Akhiezer-Polovin system. Direct numerical simulations of the Maxwell-fluid model show that these solitary waves propagate without change for a long time.
Resumo:
Doubly periodic arrays of strip conductors printed on a composite ferrite-dielectric substrate have been investigated at oblique incidence of linear polarized plane waves. The simulation results revealed strong non-reciprocity of wave reflectance and transmittance at positive and negative angles of incidence. It is also shown that the non-reciprocity is further enhanced by the strip conductor pattern.
Resumo:
The nonlinear scattering and combinatorial frequency generation by the quasi-periodic Fibonacci and Thue-Morse stacks of semiconductor layers have been investigated taking into account the nonlinear charge dynamics. It has been shown that the mixing processes in passive semiconductor structures are driven by the competitive effects of the collision of charges and resonance interactions of carriers with pump waves. The effects of the stack arrangements and constituent layer parameters on the efficiency of the combinatorial frequency generation are discussed.