34 resultados para Perfusion Spect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives:
We studied whether an increase in adenosine dose overcomes caffeine antagonism on adenosine-mediated coronary vasodilation.

Background:
Caffeine is a competitive antagonist at the adenosine receptors, but it is unclear whether caffeine in coffee alters the actions of exogenous adenosine, and whether the antagonism can be surmounted by increasing the adenosine dose.

Methods:
Myocardial perfusion scintigraphy (MPS) was used to assess adenosine-induced hyperemia in 30 patients before (baseline) and after coffee ingestion (caffeine). At baseline, patients received 140 µg/kg/min of adenosine combined with low-level exercise. For the caffeine study, 12 patients received 140 µg/kg/min of adenosine (standard) and 18 patients received 210 µg/kg/min (high dose) after caffeine intake (200 mg). Myocardial perfusion was assessed semiquantitatively and quantitatively, and perfusion defect was characterized according to the presence of reversibility.

Results:
Caffeine reduced the magnitude of perfusion abnormality induced by standard adenosine as measured by the summed difference score (SDS) (12.0 ± 4.4 at baseline vs. 4.1 ± 2.1 after caffeine, p < 0.001) as well as defect size (18% [3% to 38%] vs. 8% [0% to 22%], p < 0.01), whereas it had no effect on the abnormalities caused by high-dose adenosine (SDS, 7.7 ± 4.0 at baseline vs. 7.8 ± 4.2 after caffeine, p = 0.7). There was good agreement between baseline and caffeine studies for segmental defect category (kappa = 0.72, 95% confidence interval: 0.65 to 0.79) in the high-dose group. An increase in adenosine after caffeine intake was well tolerated.

Conclusions:
Caffeine in coffee attenuates adenosine-induced coronary hyperemia and, consequently, the detection of perfusion abnormality by adenosine MPS. This can be overcome by increasing the adenosine dose without compromising test tolerability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We investigated if minimizing bowel manipulation and mesenteric traction using the retroperitoneal approach in open abdominal aortic aneurysm (AAA) repair preserves splanchnic perfusion, as measured by gastric tonometry, and reduces the systemic inflammatory response and dysfunction of the various organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of