28 resultados para Peptide Family


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Helokinestatins 1–5 represent a novel family of bradykinin antagonist peptides originally isolated from the venom of the Gila Monster, Heloderma suspectum. We found that they were encoded in tandem along with a single copy of C-type natriuretic peptide (CNP), by two different but almost identical biosynthetic precursors that were cloned from a venom-derived cDNA library. Here we have applied the same strategy to the venom of a related species, the Mexican beaded lizard, Heloderma horridum. Lyophilised venom was used as a surrogate tissue to generate a cDNA library that was interrogated with primers from the previous study and for reverse phase HPLC fractionation. The structure of a single helokinestatin precursor was obtained following sequencing of 20 different clones. The open-reading frame contained 196 amino acid residues, somewhat greater than the 177–178 residues of the corresponding helokinestatin precursors in H. suspectum. The reason for this difference in size was the insertion of an additional domain of 18 amino acid residues encoding an additional copy of helokinestatin-3. Helokinestatin-6 (GPPFNPPPFVDYEPR) was a novel peptide from this precursor identified in venom HPLC fractions. A synthetic replicate of this peptide antagonised the relaxation effect of bradykinin on rat arterial smooth muscle. The novel peptide family, the helokinestatins, have been shown to be present in the venom of H. horridum and to be encoded by a single precursor of different structure to those from H. suspectum. Studies such as this reveal the naturally-selected structures of bioactive peptides that have been optimised for purpose and provide the scientist with a natural analogue library for pharmacological investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the ancient practice of traditional Chinese medicine (TCM) utilizes predominantly herbal ingredients, many of which are now the subject of intense scientific scrutiny, significant quantities of animal tissue-derived materials are also employed. Here we have used contemporary molecular techniques to study the material known as lin wa pi, the dried skin of the Heilongjiang brown frog, Rana amurensis, that is used commonly as an ingredient of many medicines, as a general tonic and as a topical antimicrobial/wound dressing. Using a simple technology that has been developed and validated over several years, we have demonstrated that components of both the skin granular gland peptidome and transcriptome persist in this material. Interrogation of the cDNA library constructed from the dried skin by entrapment and amplification of polyadenylated mRNA, using a "shotgun" primer approach and 3'-RACE, resulted in the cloning of cDNAs encoding the precursors of five putative antimicrobial peptides. Two (ranatuerin-2AMa and ranatuerin-2AMb) were obvious homologs of a previously described frog skin peptide family, whereas the remaining three were of sufficient structural novelty to be named amurins 1-3. Mature peptides were each identified in reverse phase HPLC fractions of boiling water extracts of skin and their structures confirmed by MS/MS fragmentation sequencing. Components of traditional Chinese medicines of animal tissue origin may thus contain biologically active peptides that survive the preparation procedures and that may contribute to therapeutic efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The allatostatins are a family of peptides isolated originally from the cockroach, Diploptera punctata. Related peptides have been identified in Periplaneta americana and the blowfly, Calliphora vomitoria. These peptides have been shown to be potent inhibitors of juvenile hormone synthesis in these species. A peptide inhibitor of juvenile hormone biosynthesis has also been isolated from the moth, Manduca sexta; however, this peptide has no structural homology with the D. punctata-type allatostatins. Investigations of the phylogeny of the D. punctata allatostatin peptide family have been started by examining a number of nonarthropod invertebrates for the presence of allatostatin-like molecules using immunocytochemistry with antisera directed against the conserved C-terminal region of this family. Allatostatin-like immunoreactivity (ALIR) was demonstrated in the nervous systems of Hydra oligactis (Hydrozoa), Moniezia expansa (Cestoda), Schistosoma mansoni (Trematoda), Artioposthia triangulata (Turbellaria), Ascaris suum (Nematoda), Lumbricus terrestris (Oligochaeta), Limax pseudoflavus (Gastropoda), and Eledone cirrhosa (Cephalopoda). ALIR could not be demonstrated in Ciona intestinalis (Ascidiacea). These results suggest that molecules related to the allatostatins may play an important role in nervous system function in many invertebrates as well as in insects and that they also have an ancient evolutionary lineage. (C) 1994 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chicken pancreatic polypeptide is the prototype of the neuropeptide Y (NPY)/PP superfamily of regulatory peptides. This polypeptide was appended the descriptive term avian, despite the presence of some 8600 extant species of bird. Additional primary structures from other avian species, including turkey, goose and ostrich, would suggest that the primary structure of this polypeptide has been highly-conserved during avian evolution. Avian pancreatic polypeptides structurally-characterised to date have distinctive primary structural features unique to this vertebrate group including an N-terminal glycyl residue and a histidyl residue at position 34. The crow family, Corvidae, is representative of the order Passeriformes, generally regarded as the most evolutionarily recent and diverse avian taxon. Pancreatic polypeptide has been isolated from pancreatic tissues from five representative Eurasian species (the magpie, Pica pica; the jay, Garrulus glandarius; the hooded crow, Corvus corone; the rook, Corvus frugilegus; the jackdaw, Corvus monedula) and subjected to structural analyses. Mass spectroscopy estimated the molecular mass of each peptide as 4166 +/- 2 Da. The entire primary structures of 36 amino acid residue peptides were established in single gas-phase sequencing runs. The primary structures of pancreatic polypeptides from all species investigated were identical: APAQPAYPGDDAPVEDLLR-FYNDLQQYLNVVTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed. The molecular mass (4165.6 Da), calculated from the sequences, was in close agreement with mass spectroscopy estimates. The presence of an N-terminal alanyl residue and a prolyl residue at position 34 differentiates crow PP from counterparts in other avian species. These residues are analogous to those found in most mammalian analogues. These data suggest that the term avian, appended to the chicken peptide, is no longer tenable due to the presence of an Ala1, Pro34 peptide in five species from the largest avian order. These data might also suggest that, in keeping with the known structure/activity requirements of this peptide family, crow PP should interact identically to mammalian analogues on mammalian receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most widespread and abundant families of pharmacologically active peptides in amphibian defensive skin secretions is the bradykinins and related peptides. Despite retaining certain primary structural attributes that assign them to this peptide family, bradykinins and related peptides are unique among amphibian skin peptides in that they exhibit a wide range of primary structural variations, post-translational modifications and/or N-terminal or C-terminal extensions. Initially it was believed that their high degree of primary structural heterogeneity was reflective of random gene mutations within species, but latterly, there is an increasing body of evidence that the spectrum of structural modifications found within this peptide family is reflective of the vertebrate predator spectrum of individual species. Here we report the discovery of ornithokinin (avian bradykinin – Thr6, Leu8-bradykinin) in the skin secretion of the Chinese bamboo odorous frog, Odorrana versabilis. Molecular cloning of its biosynthetic precursor-encoding cDNA from a skin secretion-derived cDNA library revealed a deduced open-reading frame of 86 amino acid residues, encoding a single copy of ornithokinin towards its C-terminus. The domain architecture of this ornithokinin precursor protein was consistent with that of a typical amphibian skin peptide and quite different to that of the ornithokininogen from chicken plasma. Ornithokinin was reported to induce hypotension in the chicken and to contract the chicken oviduct but to have no obvious effect on the rat uterus. However, in this study, synthetic ornithokinin was found to contract the rat ileum (EC50 = 539 nM) and to increase contraction frequency in the rat uterus (EC50 = 1.87 μM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri) skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH2 and SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH2, i.e. two carboxyamidated 34 residue peptides with an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys2 and Cys7. Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L discriminations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene related peptide (CGRP) and adrenomedullin from other vertebrates. Detailed sequence analysis as well as the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins (32 residues) or CGRPs (37 amino acids) and may justify their classification in a novel peptide family within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with synthetic replicas of the S–S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal myotropic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intermedin/adrenomedullin-2 (IMD) is a member of the adrenomedullin/CGRP peptide family. Less is known about the distribution of IMD than for other family members within the mammalian cardiovascular system, particularly in humans. The aim was to evaluate plasma IMD levels in healthy subjects and patients with chronic heart failure. IMD and its precursor fragments, preproIMD25–56 and preproIMD57–92, were measured by radioimmunoassay in 75 healthy subjects and levels of IMD were also compared to those of adrenomedullin (AM) and mid-region proadrenomedullin45–92 (MRproAM45–92) in 19 patients with systolic heart failure (LVEF < 45%). In healthy subjects, plasma levels (mean + SE) of IMD (6.3 + 0.6 pg ml−1) were lower than, but correlated with those of AM (25.8 + 1.8 pg ml−1; r = 0.49, p < 0.001). Plasma preproIMD25–56 (39.6 + 3.1 pg ml−1), preproIMD57–92 (25.9 + 3.8 pg ml−1) and MRproAM45–92 (200.2 + 6.7 pg ml−1) were greater than their respective bioactive peptides. IMD levels correlated positively with BMI but not age, and were elevated in heart failure (9.8 + 1.3 pg ml−1, p < 0.05), similarly to MRproAM45–92 (329.5 + 41.9 pg ml−1, p < 0.001) and AM (56.8 + 10.9 pg ml−1, p < 0.01). IMD levels were greater in heart failure patients with concomitant renal impairment (11.3 + 1.8 pg ml−1) than those without (6.5 + 1.0 pg ml−1; p < 0.05). IMD and AM were greater in patients receiving submaximal compared with maximal heart failure drug therapy and were decreased after 6 months of cardiac resynchronization therapy. In conclusion, IMD is present in the plasma of healthy subjects less abundantly than AM, but is similarly correlated weakly with BMI. IMD levels are elevated in heart failure, especially with concomitant renal impairment, and tend to be reduced by high intensity drug or pacing therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Candidal species, particularly Candida albicans are common pathogens in the oral cavity and perioral region. Many of the manifestations of candidiasis are associated with the formation of Candida biofilms on host surfaces and/or implanted biomaterials. Biofilms are clinically important due to their increased resistance to therapeutic intervention and the ability of cells within the biofilm to withstand host immune defences.
Objectives: The present study was designed to investigate the antifungal activity of two peptides found in skin secretions of the African volcano frog (Xenopus amieti) against the type strain of C. albicans NCTC 3179.
Methods: The antifungal activity of magainin-AM1 and peptide glycine-leucine-amide (PGLa-AM1) against C. albicans NCTC 3179 was studied in both planktonic and biofilm forms. Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of magainin-AM1 and PGLa-AM1 against planktonic C. albicans. Time kill assays were used to determine the time dependent fungicidal action of the peptides at both 4oC and 37oC. A 96 well microtitre plate model for candidal biofilm formation was employed to study the ability of the peptides to disrupt the early biofilm development (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm formation was determined quantitatively using the crystal violet assay.
Results: Both magainin-AM1 and PGLa-AM1 demonstrated inhibitory activity against Candida albicans, with MIC values of 24.3 uM and 7.5uM respectively. Time-kill assays revealed bactericidal activity of both peptides at 37oC and 4oC. Magainin-AM1 and PGLa-AM1 inhibited biofilm formation in microtitre plate assays. The peptides were particularly effective during early biofilm establishment when compared with fluconazole treatment.
Conclusions: Magainin-AM1 and PGLa-AM1 are active against C albicans in both planktonic and biofilm forms. Further testing of this peptide family against candidal biofilms is recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of substrate-based a-keto-ß-aldehyde (glyoxal) sequences have been synthesised and evaluated as inhibitors of the caspase family of cysteine proteases. A number of potent inhibitor sequences have been identified. For example, a palmitic acid containing sequence pal-Tyr-Val-Ala-Asp-glyoxal was demonstrated to be an extremely effective inhibitor of caspase-1, inhibiting not only the action of the protease against synthetic fluorogenic substrates (Ki = 0.3 nM) but also blocking its processing of pro-interleukin-1beta (pro-IL-1ß). In addition, the peptide Ac-Asp-Glu-Val-Asp-glyoxal, which is based on the consensus cleavage sequence for caspase-3, is a potent inhibitor of this protease (Ki = 0.26 nM) yet only functions as a comparatively modest inhibitor of caspase-1 (Ki = 451 nM). Potent inhibitor sequences were also identified for caspases-6 and -8. However, the degree of discrimination between the family members is limited. The ability of Ac-Asp-Glu-Val-Asp-glyoxal to block caspase-3 like activity in whole cells and to delay the development of apoptosis was assessed. When tested against caspase-3 like activity in cell lysates, Ac-Asp-Glu-Val-Asp-glyoxal displayed effective inhibition similar to that observed against recombinant caspase-3. Treatment of whole cells with this potent caspase-3 inhibitor was however, not sufficient to significantly stall the development of apoptosis in-vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease-activated receptors [PARs] are a family of G-protein-coupled seven-transmembrane domain receptors that are activated by proteolytic cleavage of their amino-terminal exodomain. To characterize the cleavage rate of human PAR-1 / 2 / 3 and 4 by trypsin and thrombin, four synthetic quenched-fluorescent peptide substrates have been synthesized. Each substrate consisted of a ten-residue peptide spanning the receptor activation cleavage site and using progress-curve kinetics, k(cat)/K-m values were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.