27 resultados para Penalized spline
Resumo:
The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.
Resumo:
An ab initio approach has been applied to study multiphoton detachment rates for the negative hydrogen ion in the lowest nonvanishing order of perturbation theory. The approach is based on the use of B splines allowing an accurate treatment of the electronic repulsion. Total detachment rates have been determined for two- to six-photon processes as well as partial rates for detachment into the different final symmetries. It is shown that B-spline expansions can yield accurate continuum and bound-state wave functions in a very simple manner. The calculated total rates for two- and three-photon detachment are in good agreement with other perturbative calculations. For more than three-photon detachment little information has been available before now. While the total cross sections show little structure, a fair amount of structure is predicted in the partial cross sections. In the two-photon process, it is shown that the detached electrons mainly have s character. For four- and six-photon processes, the contribution from the d channel is the most important. For three- and five-photon processes p electrons dominate the electron emission spectrum. Detachment rates for s and p electrons show minima as a function of photon energy. © 1994 The American Physical Society.
Resumo:
We study the ionization of helium (fie) in collision with antiprotons (p) in the energy range from 10 keV to 1000 keV. We adopt a semiclassical single center close coupling approach in which the wave function for the electron is expanded in a B-spline basis centered on the nucleus of the He atom, The calculations are performed using two different models: the independent particle (IP) model and the one-electron (OE) approximation. The interaction between the active electron and the rest of the atom, i.e. passive electron and nucleus, is represented by a model potential. The results obtained are compared with experimental data as well as with existing theoretical calculations. (c) 2005 Published by Elsevier B.V.
Resumo:
We study the ionization of H(1s), He+(1s) and He+(2s) by antiprotons in the energy range from 0.1 to 500 keV. We adopt a semiclassical single centre close-coupling approach in which the wavefunction for the electron is expanded in a B-spline basis centred on the nucleus of the atom/ion. Comparison is made with existing theoretical calculations and available experimental data. The results are encouraging.
Resumo:
A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.
Resumo:
We investigate the effect of correlated additive and multiplicative Gaussian white noise oil the Gompertzian growth of tumours. Our results are obtained by Solving numerically the time-dependent Fokker-Planck equation (FPE) associated with the stochastic dynamics. In Our numerical approach we have adopted B-spline functions as a truncated basis to expand the approximated eigenfunctions. The eigenfunctions and eigenvalues obtained using this method are used to derive approximate solutions of the dynamics under Study. We perform simulations to analyze various aspects, of the probability distribution. of the tumour cell populations in the transient- and steady-state regimes. More precisely, we are concerned mainly with the behaviour of the relaxation time (tau) to the steady-state distribution as a function of (i) of the correlation strength (lambda) between the additive noise and the multiplicative noise and (ii) as a function of the multiplicative noise intensity (D) and additive noise intensity (alpha). It is observed that both the correlation strength and the intensities of additive and multiplicative noise, affect the relaxation time.
Resumo:
We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
Resumo:
This paper reports on work in developing a finite element (FE) based die shape optimisation for net-shape forging of 3D aerofoil blades for aeroengine applications. Quantitative representations of aerofoil forging tolerances were established to provide a correlation between conventional dimensional and shape specifications in forging production and those quantified in FE simulation. A new direct compensation method was proposed, employing variable weighting factors to minimise the total forging tolerances in forging optimisation computations. A surface approximation using a B-spline surface was also developed to ensure improved die surface quality for die shape representation and design. For a Ni-alloy blade test case, substantial reduction in dimensional and shape tolerances was achieved using the developed die shape optimisation system.
Resumo:
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Resumo:
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2-3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After similar to 100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15 +/-0.05 M-. of Ni-56 which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K-L'=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.