13 resultados para Paulus Silentiarus.
Resumo:
Background: Fish intake, the major source of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may reduce the risk of age-related macular degeneration (AMD). Objective: We investigated the association of oily fish and dietary DHA and EPA with neovascular AMD (NV-AMD). Design: Participants aged =65 y in the cross-sectional population-based EUREYE study underwent fundus photography and were interviewed by using a food-frequency questionnaire. Fundus images were graded by the International Classification System for Age Related Maculopathy. Questionnaire data were converted to nutrient intakes with the use of food-composition tables. Survey logistic regression was used to calculate odds ratios (ORs) and 95% CIs of energy-adjusted quartiles of EPA or DHA with NV-AMD, taking into account potential confounders. Results: Dietary intake data and fundus images were available for 105 cases with NV-AMD and for 2170 controls without any features of early or late AMD. Eating oily fish at least once per week compared with less than once per week was associated with a halving of the odds of NV-AMD (OR = 0.47; 95% CI: 0.33, 0.68; P = 0.002). Compared with the lowest quartile, there was a significant trend for decreased odds with increasing quartiles of either DHA or EPA. ORs in the highest quartiles were 0.32 (95% CI: 0.12, 0.87; P = 0.03) for DHA and 0.29 (95% CI: 0.11, 0.73; P = 0.02) for EPA. Conclusions: Eating oily fish at least once per week compared with less than once per week was associated with a halving of the OR for NV-AMD. © 2008 American Society for Nutrition.
Resumo:
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
Resumo:
OBJECTIVE:
To study associations between severity stages of early and late age-related macular degeneration (AMD) and genetic variations in age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) and to investigate potential interactions between smoking and ARMS2.
DESIGN:
Population-based, cross-sectional European Eye Study in 7 countries in Europe.
PARTICIPANTS:
Four thousand seven hundred fifty participants, 65 years of age and older, recruited through random sampling.
METHODS:
Participants were classified on the basis of the more severely affected eye into 5 mutually exclusive AMD severity stages ranging from no AMD, 3 categories of early AMD, and late AMD. History of cigarette smoking was available and allowed classification into never, former, and current smokers, with the latter 2 groups combined into a single category of ever smokers for analysis. Genotyping was performed for single nucleotide polymorphisms rs10490924 and rs4146894 in ARMS2 and rs1061170 in CFH. Associations were analyzed by logistic regression.
MAIN OUTCOME MEASURES:
Odds ratios (ORs) for stage of AMD associated with genetic variations in ARMS2 and CFH and interactions between ARMS2 and smoking status.
RESULTS:
Early AMD was present in 36.4% and late AMD was present in 3.3% of participants. Data on both genotype and AMD were available for 4276 people. The ORs for associations between AMD stage and ARMS2 increased monotonically with more severe stages of early AMD and were altered little by adjustment for potential confounders. Compared with persons with no AMD, carriers of the TT genotype for rs10490924 in ARMS2 had a 10-fold increase in risk of late AMD (P<3 × 10(-20)). The ORs for associations with CFH were similar for stage 3 early AMD and late AMD. Interactions between rs10490924 in ARMS2 and smoking status were significant in both unadjusted and adjusted models (P = 0.001). The highest risk was observed in those doubly homozygous for rs10490924 and rs1061170 in CFH (OR, 62.3; 95% confidence interval, 16-242), with P values for trend ranging from 0.03 (early AMD, stage 1) to 1 × 10(-26) (late AMD).
CONCLUSIONS:
A strong association was demonstrated between all stages of AMD and genetic variation in ARMS2, and a significant gene-environment interaction with cigarette smoking was confirmed.
Resumo:
An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 μm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 μm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.
Resumo:
Intense, femtosecond laser interactions with blazed grating targets are studied through experiment and particle-in-cell (PIC) simulations. The high harmonic spectrum produced by the laser is angularly dispersed by the grating leading to near-monochromatic spectra emitted at different angles, each dominated by a single harmonic and its integer-multiples. The spectrum emitted in the direction of the third-harmonic diffraction order is measured to contain distinct peaks at the 9th and 12th harmonics which agree well with two-dimensional PIC simulations using the same grating geometry. This confirms that surface smoothing effects do not dominate the far-field distributions for surface features with sizes on the order of the grating grooves whilst also showing this to be a viable method of producing near-monochromatic, short-pulsed extreme-ultraviolet radiation.
Resumo:
Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.
Resumo:
Experimental results on relativistic surface HHG at a repetition rate of 10 Hz are presented. Average powers in the 10?W range are generated in the spectral range of 51 to 26 nm (24-48 eV). The surface harmonic radiation is produced by focusing the second-harmonic of a high-power laser onto a rotating glass surface to moderately relativistic intensities of 3×10 19Wcm ?2. The harmonic emission exhibits a divergence of 26 mrad. Together with absolute photon numbers recorded by a calibrated spectrometer, this allows for the determination of the extreme ultraviolet (XUV) yield. The pulse energies of individual harmonics are reaching up to the μJ level, equivalent to an efficiency of 10 ?5. The capability of producing stable and intense high-harmonic radiation from relativistic surface plasmas may facilitate experiments on nonlinear ionization or the seeding of free-electron lasers. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
We report on the unequal spacing attosecond pulse trains from relativistic surface plasmas. The surface high harmonics efficiency is determined and could be enhanced using an optimized plasma scale length and density.
Resumo:
High-harmonic generation (HHG) by nonlinear interaction of intense laser pulses with gases or plasma surfaces is the most prominent way of creating highly coherent extreme ultraviolet (EUV/XUV) pulses. In the last years, several scientific applications have been found which require the measurement of the polarization of the harmonic radiation. We present a broadband XUV polarimeter based on multiple Fresnel reflections providing an extinction rate of 5-25 for 17-45 nm which is particularly suited for surface harmonics. The device has first been tested at a gas harmonic source providing linearly polarized XUV radiation. In a further experiment using HHG from plasma surfaces, the XUV polarimeter allowed a polarization measurement of high harmonic radiation from plasma surfaces for the first time which reveals a linear polarization state as predicted for our generation parameters. The generation and control of intense polarized XUV pulses-together with the availability of broadband polarizers in the XUV-open the way for a series of new experiments. For instance, dichroism in the XUV, elliptically polarized harmonics from aligned molecules, or the selection rules of relativistic surface harmonics can be studied with the broadband XUV polarimeter.
Resumo:
We report on the unequal spacing attosecond pulse trains from relativistic surface plasmas. The surface high harmonics efficiency is determined and could be enhanced using an optimized plasma scale length and density.
Resumo:
High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.