55 resultados para Pauli nonlocality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purpose of a nonlocality test, we propose a general correlation observable of two parties by utilizing local d- outcome measurements with SU(d) transformations and classical communications. Generic symmetries of the SU(d) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser- Home-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, leads to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for d-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous- variable (CV) entangled state with d measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(greater than or equal to2) measurement outcomes when the observables are of SU(d) transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2x2 Hilbert space. The quantum nonlocality persists longer in 2x2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper, Verma et al. [Eur. Phys. J. D 42, 235 (2007)] have reported results for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 17 levels of the (1s(2)2s(2)2p(6))3s(2)3p(6), 3s(2)3p(5)3d and 3s3p(6)3d configurations of Ni XI. They adopted the CIV3 and R-matrix codes for the generation of wavefunctions and the scattering process, respectively. In this paper, through two independent calculations performed with the fully relativistic DARC (along with GRASP) and FAC codes, we demonstrate that their results are unreliable. New data are presented and their accuracy is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assess quantum nonlocality of multiparty entangled thermal states by studying, quantitatively, both tripartite and quadripartite states belonging to the Greenberger-Horne-Zeilinger, W, and linear cluster-state classes and showing violation of relevant Bell-like inequalities. We discuss the conditions for maximizing the degree of violation against the local thermal character of the states and the inefficiency of the detection apparatuses. We demonstrate that such classes of multipartite entangled states can be made to last quite significantly, notwithstanding adverse operating conditions. This opens up the possibility for coherent exploitation of multipartite quantum channels made out of entangled thermal states. Our study is accompanied by a detailed description of possible generation schemes for the states analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone(1,2). However, its practical applications are limited by the inherently weak nonlinear effects that govern photon-photon interactions in conventional materials, particularly at high switching rates(3). Here, we show that the recently discovered nonlocal optical behaviour of plasmonic nanorod metamaterials(4) enables an enhanced, ultrafast, nonlinear optical response. We observe a large (80%) change of transmission through a subwavelength thick slab of metamaterial subjected to a low control light fluence of 7 mJ cm(-2), with switching frequencies in the terahertz range. We show that both the response time and the nonlinearity can be engineered by appropriate design of the metamaterial nanostructure. The use of nonlocality to enhance the nonlinear optical response of metamaterials, demonstrated here in plasmonic nanorod composites, could lead to ultrafast, low-power all-optical information processing in subwavelength-scale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study multipartite correlations and nonlocality in an isotropic Ising ring under transverse magnetic field at both zero and finite temperature. We highlight parity-induced differences between the multipartite Bell-like functions used in order to quantify the degree of nonlocality within a ring state and reveal a mechanism for the passive protection of multipartite quantum correlations against thermal spoiling effects that is clearly related to the macroscopic properties of the ring model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a system of three trapped ions in an anisotropic bidimensional trap. By focusing on the transverse modes of the ions, we show that the mutual ion-ion Coulomb interactions set entanglement of a genuine tripartite nature, to some extent persistent to the thermal nature of the vibronic modes. We tackle this issue by addressing a nonlocality test in the phase space of the ionic system and quantifying the genuine residual tripartite entanglement in the continuous variable state of the transverse modes.