75 resultados para Papillary Muscles
Resumo:
Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cribriform-morular variant (C-MV) of papillary thyroid carcinoma (PTC) is a rare and unusual neoplasm composed of multiple histologic components, including cribriform, papillary, solid, tall columnar, and morular patterns. Analyses of gross C-MV of PTC lesions has linked adenomatous polyposis coli (APC) mutations to its pathogenesis; however, the extent of involvement of mutations in the development Of individual components is unclear We report on bidirectional sequencing of the mutation cluster region (codons 1032-1565) of the APC gene in individually laser-microdissected components of a previously unreported C-MV of PTC. A silent Thr1493Thr gene variant was found in all tumoral components, whereas a 5-base-pair frameshift deletion at codon 1309 was identified only in the morules. Neither variant was observed in matched normal thyroid tissue. These results show the histologic components of C-MV of PTC to have some common mutational background, although additional somatic mutations may be involved in the development of morular structures.
Resumo:
Smooth muscle cell (SMC) differentiation is a critical process during cardiovascular formation and development, but the underlying molecular mechanism remains unclear.
Resumo:
Papillary glioneuronal tumor (PGNT) was first described as a distinct clinic-pathological entity by Komori et al. in 1998. Since then it has been included as a mixed neuronal-glial tumor in the revised WHO (2007) classification of central nervous system tumors. On brain imaging, it appears as a demarcated, solid to cystic, contrast-enhancing mass usually located in the temporal lobe. Histologically, it is considered a biphasic tumor characterized by small cuboidal GFAP-positive astrocytes around hyalinised blood vessels and synaptophysin-positive interpapillary collections of neurocytes, large neurons and intermediate-sized "ganglioid cells". Although they are generally regarded as benign WHO Grade I tumors, recent reports have described more pathologically aggressive features. To date, these reports have all been single lesions.
Resumo:
Papillary glioneuronal tumor (PGNT) was first described as a distinct clinic-pathological entity by Komori et al. in 1998. Since then it has been included as a mixed neuronal-glial tumor in the revised WHO (2007) classification of central nervous system tumors. On brain imaging, it appears as a demarcated, solid to cystic, contrast-enhancing mass usually located in the temporal lobe. Histologically, it is considered a biphasic tumor characterized by small cuboidal GFAP-positive astrocytes around hyalinised blood vessels and synaptophysin-positive interpapillary collections of neurocytes, large neurons and intermediate-sized "ganglioid cells". Although they are generally regarded as benign WHO Grade I tumors, recent reports have described more pathologically aggressive features. To date, these reports have all been single lesions.
Resumo:
While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B2-type receptors.
Resumo:
Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.
Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).
Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.
Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).
Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.