3 resultados para Pala aeronautica smorzatore passivo
Resumo:
The phosphonopyruvate hydrolase (PalA) found in Variovorax sp., Pal2, is a novel carbon-phosphorus bond cleavage enzyme, which is expressed even in the presence of high levels of phosphate, thus permitting phosphonopyruvate to be used as the sole carbon and energy source. Analysis of the regions adjacent to the palA gene revealed the presence of the five structural genes that constitute the 2-amino-3-phosphonopropionic acid (phosphonoalanine)-degradative operon. Reverse transcriptase-PCR (RT-PCR) experiments demonstrated that all five genes in the operon are transcribed as a single mRNA and that their transcription is induced by phosphonoalanine or phosphonopyruvate. Transcriptional fusions of the regulatory region of the phosphonoalanine degradative operon with the gfp gene were constructed. Expression analysis indicated that the presence of a LysR-type regulator (encoded by the palR gene) is essential for the transcription of the structural genes of the operon. Similar gene clusters were found in the sequenced genomes of six bacterial species from the Alpha-, Beta- and Gammaproteobacteria, and analysis of metagenomic libraries revealed that sequences related to palA are widely spread in the marine environment.
Resumo:
Darwin's On the Origin of Species has led to a theory of evolution with a mass of empirical detail on population genetics below species level, together with heated debate on the details of macroevolutionary patterns above species level. Most of the main principles are clear and generally accepted, notably that life originated once and has evolved over time by descent with modification. Here, I review the fossil and molecular phylogenetic records of the response of life on Earth to Quaternary climatic changes. I suggest that the record can be best understood in terms of the nonlinear dynamics of the relationship between genotype and phenotype, and between climate and environments. 'The origin of species' is essentially unpredictable, but is nevertheless an inevitable consequence of the way that organisms reproduce through time. The process is 'chaotic', but not 'random'. I suggest that biodiversity is best considered as continuously branching systems of lineages, where 'species' are the branch tips. The Earth's biodiversity should thus (1) be in a state of continuous increase and (2) show continuous discrepancies between genetic and morphological data in time and space. © The Palaeontological Association.