81 resultados para Pain and Suffering Damage
Resumo:
All animals face hazards that cause tissue damage and most have nociceptive reflex responses that protect them from such damage. However, some taxa have also evolved the capacity for pain experience, presumably to enhance longterm protection through behavior modification based on memory of the unpleasant nature of pain. In this article I review various criteria that might distinguish nociception from pain. Because nociceptors are so taxonomically widespread, simply demonstrating their presence is not sufficient. Furthermore, investigation of the central nervous system provides limited clues about the potential to experience pain. Opioids and other analgesics might indicate a central modulation of responses but often peripheral effects could explain the analgesia; thus reduction of responses by analgesics and opioids does not allow clear discrimination between nociception and pain. Physiological changes in response to noxious stimuli or the threat of a noxious stimulus might prove useful but, to date, application to invertebrates is limited. Behavior of the organism provides the greatest insights. Rapid avoidance learning and prolonged memory indicate central processing rather than simple reflex and are consistent with the experience of pain. Complex, prolonged grooming or rubbing may demonstrate an awareness of the specific site of stimulus application. Tradeoffs with other motivational systems indicate central processing, and an ability to use complex information suggests sufficient cognitive ability for the animal to have a fitness benefit from a pain experience. Available data are consistent with the idea of pain in some invertebrates and go beyond the idea of just nociception but are not definitive. In the absence of conclusive data, more humane care for invertebrates is suggested.
Resumo:
Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.
Resumo:
Background: Non-invasive diagnosis of acute myocardial infarction (AMI) associated with significant left main stem (LMS) stenosis remains challenging.
Methods: Consecutive patients presenting with acute ischaemic-type chest pain from 2000 to 2010 were analysed. Entry criteria: 12-lead ECG and Body Surface Potential Map (BSPM) at presentation, cardiac troponin T (cTnT) =12?h and coronary angiography during admission. cTnT =0.03?µg/l defined AMI. ECG abnormalities assessed: STEMI by Minnesota criteria; ST elevation (STE) aVR =0.5?mm; ST depression (STD) =0.5?mm in =2 contiguous leads (CL); T-wave inversion (TWI) =1?mm in =2 CL. BSPM STE was =2?mm in anterior, =1?mm in lateral, inferior, right ventricular or high right anterior and =0.5?mm in posterior territories. Significant LMS stenosis was =70%.
Results: Enrolled were 2810 patients (aged 60?±?12 years; 71% male). Of these, 116 (4.1%) had significant LMS stenosis with AMI occurring in 92 (79%). STEMI by Minnesota criteria occurred in 13 (11%) (sensitivity 12%, specificity 92%), STE in lead aVR in 23 (20%) (sensitivity 23%, specificity 92%), TWI in 38 (33%) (sensitivity 34%, specificity 71%) and STD in 51 (44%) (sensitivity 49%, specificity 75%). BSPM STE occurred in 85 (73%): sensitivity 88%, specificity 83%, positive predictive value 95% and negative predictive value 65%. Of those with AMI, 74% had STE in either the high right anterior or right ventricular territories not identified by the 12-lead ECG. C-Statistic for AMI diagnosis using BSPM STE was 0.800 (P?<?0.001).
Conclusion: In patients with significant LMS stenosis presenting with chest pain, BSPM STE has improved sensitivity (88%), with specificity 83%, over 12-lead ECG in the diagnosis of AMI.