27 resultados para Packed Bed Membrane Reactor (pbmr)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taste and odour compounds, especially geosmin (GSM) and 2-methylisoborneol (2-MIB), cause major problems in both drinking water and aquaculture industries world-wide. Aquaculture in particular has experienced significant financial losses due to the accumulation of taint compounds prior to harvest resulting in consumer rejection. UV-TiO2 photocatalysis has been demonstrated to remove GSM and 2-MIB at laboratory scale but the development of a continuous flow reactor suitable for use in water treatment has not been investigated. In this study, a pilot packed bed photocatalytic reactor was developed and evaluated for water treatment with both laboratory and naturally tainted samples. A significant reduction of both 2-MIB and GSM was achieved in both trials using the packed bed reactor unit. With the laboratory spiked water (100ngL-1 of each compound added prior to treatment), detectable levels were reduced by up to 97% after a single pass through the unit. When the reactor was used to treat water in a fish farm where both compounds were being produced in situ (2-MIB: 19ngL-1 and GSM: 14ngL-1) a reduction of almost 90% in taint compounds was achieved. These very encouraging promising results demonstrate the potential of this UV-TiO2 photocatalytic reactor for water treatment in fish rearing systems and other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 mu m (O.D.) thermocouple has been inserted in a 250 mu m (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 l and a 1200 l packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 l reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response.
The surface response prediction showed a maximum lovastatin production of 1.86 mg g-1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min-1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 l reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a procedure based on spatially-resolved near-infrared imaging, in order to observe temperature and composition maps in gas-solid packed beds subjected to effects of aspect ratio and non-isothermal conditions. The technique was applied to the water vapour flow in a packed bed adsorber of low aspect ratio, filled with silica gel, using a tuneable diode laser, focal planar array detector and tomographic reconstruction. The 2D projected images from parallel scanning permitted data to be retrieved from the packing and above the packing sections of 12.0×12.0×18.2mm at a volume-resolution of 0.15×0.15×0.026mm and a time-resolution of less than 3min. The technique revealed uneven temperature and composition maps in the core packed bed and in the vicinity of the wall due to flow maldistribution. In addition, the heat uptake from the packed bed and local cross-mixing were experimentally ascertained by local profiles of the water vapour composition and temperature under various aspect ratios and feed flow rates. The relative deviations in temperature and compositions were 11.1% and 9.3%, respectively. The deviation in composition, which covers the packing and above the packing sections, was slightly higher than the deviation of 8% obtained up-to-date but was limited to the exit of a packed bed adsorber. © 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dual chamber membrane reactor was used in order to study the effect of macroscopically applied oxygen chemical potential differences to a platinum catalyst supported on a mixed oxygen ion and electronic conducting membrane. It is believed that the oxygen chemical potential difference imposed by the use of an oxygen sweep in one of the reactor chambers causes the back-spillover of oxygen species from the support onto the catalyst surface, resulting in the modification of the catalytic activity. The use of different sweep gases, such as ethylene and hydrogen was investigated as the means to reverse the rate modification by removing the spilt over species from the catalyst surface and returning the system to its initial state. Oxygen sweep in general had a positive effect on the reaction rate with rate increases up to 20% measured. Experimental results showed that hydrogen is a more potent sweep gas than ethylene in terms of the ability to reverse rate modification. A 10% rate loss was observed when using an ethylene sweep as compared with an almost 60% rate decrease when hydrogen was used as the sweep gas. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared (NIR) imaging was used to observe water vapour flow in a gas-solid fluidized bed reactor. The technique consisted of a broadband light, an optical filter with a bandwidth centred on strong water vapour absorptions, a Vidicon NIR camera, a nozzle from which an optically active mixture of gas and water vapour was trans-illuminated by an NIR beam and collected data of transmittance were normalized to actual optical path. The procedure was applied to a thin fluidized bed reactor with a low aspect ratio of tube to particle diameters (D-1/d(p)) in order to validate the wall effect on flow dynamics and mass transfer during the reduction of ceria-silica by hydrogen. High concentrations of water vapour emerged in the vicinity of the wall when the bed was operated at pseudo-static conditions but disappeared when the bed was run at minimum bubbling conditions. This result shows the capability of optical methods with affordable costs to 2D imaging opaque packed bed by using a spatially resolved probe located at the exit, which is of great benefit for in situ visualization of anisotropic concentrations in packed beds under industrially relevant conditions and thus for elucidation of the underlying reaction mechanism and diffusion interactions. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to spatially probe heterogeneous catalysed reactions within a packed bed of catalyst has been developed. The spatial resolution is achieved using a stationary perforated capillary coupled to a mass spectrometer while the catalyst bed is moved. The oxidation of CO promoted by H-2 over a Pd catalyst has been used to demonstrate the technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of a 5-wt% Cu/CeO2-x catalyst during preferential CO oxidation in hydrogen-rich gas mixtures was studied in a microchannel reactor. The CO concentration dropped from 1 vol.% to 10 ppm at a selectivity of 60%, at a temperature of 190 degrees C, and a weight hour space velocity (WHSV) of 55,000 cm(3) g(-1) h(-1). Both the CO concentration and the temperature increased when the WHSV was increased from 50,000 to 500,000 cm(3) g(-1) h(-1). An increase of the O-2 concentration from a 1.2 to 3 fold excess reduced the CO concentration to 10 ppm in a broad temperature interval of 50 degrees C at WHSVs up to 275,000 cm(3) g(-1) h(-1). The preferential CO oxidation could be carried out at higher flow rates and at higher selectivities in the microchannel reactor compared to a fixed-bed flow reactor. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
– The purpose of this paper is to investigate the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. Equilibrium data were fitted to Langmuir and Freundlich models.

Design/methodology/approach
– Column experiments were conducted in packed bed column. The used apparatus consisted of a bench-mounted glass column of 2.5 cm inside diameter and 100 cm height (column volume = 490 cm3). The column was packed with a certain amount of zeolite to give the desired bed height. The feeding solution was supplied from a 30 liter plastic container at the beginning of each experiment and fed to the column down-flow through a glass flow meter having a working range of 10-280ml/min.

Findings
– Ammonium ion exchange by natural Jordanian zeolite data were fitted by Langmuir and Freundlich isotherms. Continuous sorption of ammonium ions by natural Jordanian zeolite tuff has proven to be effective in decreasing concentrations ranging from 15-50 mg NH4-N/L down to levels below 1 mg/l. Breakthrough time increased by increasing the bed depth as well as decreasing zeolite particle size, solution flow-rate, initial NH4+ concentration and pH. Sorption of ammonium by the zeolite under the tested conditions gave the sorption capacity of 28 mg NH4-N/L at 20°C, and 32 mg NH4-N/L at 30°C.

Originality/value
– This research investigates the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. The equilibrium data of the sorption of Ammonia were plotted by using the Langmuir and Freundlich isotherms, then the experimental data were compared to the predictions of the above equilibrium isotherm models. It is clear that the NH4+ ion exchange data fitted better with Langmuir isotherm than with Freundlich model and gave an adequate correlation coefficient value.