10 resultados para PU


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important difference between chemical agents that induce oxidative damage in DNA and ionizing radiation is that radiation-induced damage is clustered locally on the DNA, Both modelling and experimental studies have predicted the importance of clustering of lesions induced by ionizing radiation and its dependence on radiation quality. With increasing linear energy transfer, it is predicted that complex lesions will be formed within 1-20 bp regions of the DNA, As well as strand breaks, these sites may contain multiple damaged bases, We have compared the yields of single strand breaks (ssb) and double strand breaks (dsb) along with those produced by treatment of irradiated DNA with the enzyme endonuclease III, which recognizes a number of oxidized pyrimidines in DNA and converts them to strand breaks. Plasmid DNA was irradiated under two different scavenging conditions to test the involvement of OH radicals with either Co-60 gamma-rays or alpha-particles from a Pu-238 source. Under low scavenging conditions (10 mM Tris) gamma-irradiation induced 7.1x10(-7) ssb Gy/bp, which increased 3.7-fold to 2.6 x 10(-6) ssb Gy/bp with endo III treatment. In contrast the yields of dsb increased by 4.2-fold from 1.5 x 10(-8) to 6.3 x 10(-8) dsb Gy/bp, This equates to an additional 2.5% of the endo III-sensitive sites being converted to dsb on enzyme treatment. For alpha-particles this increased to 9%. Given that endo III sensitive sites may only constitute similar to 40% of the base lesions induced in DNA, this suggests that up to 6% of the ssb measured in X- and 22% in alpha-particle-irradiated DNA could have damaged bases associated with them contributing to lesion complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members which can demethylate mono-, di- and tri-methylated lysine residues of histone (or non-histone) targets. To evaluate their role in regulation of hematopoietic stem cell (HSC) behaviour we performed a RNAi-based screen and found that demethylases JARID1B (H3K4) and JHDM1F (H3K9) play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSC with preserved long term in vivo lympho-myeloid differentiation potential. Jarid1b knockdown was associated with an increase in expression levels of 5’ Hoxa cluster genes and CxCl5 , and reduced levels of Pu.1, Egr1 and Cav1. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative, and Jhdmlf as a positive regulator of HSC activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated and characterized the effect of externally applied electric fields (EF) on retinal pigment epithelial (RPE) cells by exposing primary cultures of human RPE cells (hRPE) and those from the ARPE19 immortalized cell line to various strengths of EF (EF-treated cells) or to no EF (control cells) under different conditions including presence or absence of serum and gelatin and following wounding. We evaluated changes in RPE cell behavior in response to EF by using a computer based image capture and analysis system (Metamorph). We found that RPE cells responded to externally applied EFs by preferential orientation perpendicular to the EF vector, directed migration towards the anode, and faster translocation rate than control, untreated cells. These responses were voltage-dependent. Responses were observed even at low voltages, of 50-300 mV. Furthermore, the migration of hRPE cell sheets generated by wounding of confluent monolayers of cells at early and late confluence could be manipulated by the application of EF, with directed migration towards the anode observed at both sides of the wounded hRPE. In conclusion, RPE cell behaviour can be controlled by an externally applied EF. The potential for externally applied EF to be used as a therapeutic strategy in the management of selected retinal diseases warrants further investigation. © 2010 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiclassical nonlocal optics based on the hydrodynamic description of conduction electrons might be an adequate tool to study complex phenomena in the emerging field of nanoplasmonics. With the aim of confirming this idea, we obtain the local and nonlocal optical absorption spectra in a model nanoplasmonic device in which there are spatial gaps between the components at nanometric and subnanometric scales. After a comparison against time-dependent density functional calculations, we conclude that hydrodynamic nonlocal optics provides absorption spectra exhibiting qualitative agreement but not quantitative accuracy. This lack of accuracy, which is manifest even in the limit where induced electric currents are not established between the constituents of the device, is mainly due to the poor description of induced electron densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose transmit antenna selection (TAS) in decode-and-forward (DF) relaying as an effective approach to reduce the interference in underlay spectrum sharing networks with multiple primary users (PUs) and multiple antennas at the secondary users (SUs). We compare two distinct protocols: 1) TAS with receiver maximal-ratio combining (TAS/MRC) and 2) TAS with receiver selection combining (TAS/SC). For each protocol, we derive new closed-form expressions for the exact and asymptotic outage probability with independent Nakagami-m fading in the primary and secondary networks. Our results are valid for two scenarios related to the maximum SU transmit power, i.e., P, and the peak PU interference temperature, i.e., Q. When P is proportional to Q, our results confirm that TAS/MRC and TAS/SC relaying achieve the same full diversity gain. As such, the signal-to-noise ratio (SNR) advantage of TAS/MRC relaying relative to TAS/SC relaying is characterized as a simple ratio of their respective SNR gains. When P is independent of Q, we find that an outage floor is obtained in the large P regime where the SU transmit power is constrained by a fixed value of Q. This outage floor is accurately characterized by our exact and asymptotic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wireless energy harvesting protocol is proposed for a decode-and-forward relay- assisted secondary user (SU) network in a cognitive spectrum sharing paradigm. An expression for the outage probability of the relay-assisted cognitive network is derived subject to the following power constraints: 1) the maximum power that the source and the relay in the SU network can transmit from the harvested energy, 2) the peak interference power from the source and the relay in the SU network at the primary user (PU) network, and 3) the interference power of the PU network at the relay-assisted SU network. The results show that as the energy harvesting conversion efficiency improves, the relay- assisted network with the proposed wireless energy harvesting protocol can operate with outage probabilities below 20% for some practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiuser scheduling multiple-input multiple-output (MIMO) cognitive radio network (CRN) with space-time block coding (STBC) is considered in this paper, where one secondary base station (BS) communicates with one secondary user (SU) selected from K candidates. The joint impact of imperfect channel state information (CSI) in BS → SUs and BS → PU due to channel estimation errors and feedback delay on the outage performance is firstly investigated. We obtain the exact outage probability expressions for the considered network under the peak interference power IP at PU and maximum transmit power Pm at BS which cover perfect/imperfect CSI scenarios in BS → SUs and BS → PU. In addition, asymptotic expressions of outage probability in high SNR region are also derived from which we obtain several important insights into the system design. For example, only with perfect CSIs in BS → SUs, i.e., without channel estimation errors and feedback delay, the multiuser diversity can be exploited. Finally, simulation results confirm the correctness of our analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of complex cellular responses to diverse stimuli can be studied by the use of emerging chip-based technologies.

The p53 pathway is critical to maintaining the integrity of the genome in multicellular organisms. The p53gene is activated in response to DNA damage and encodes a transcription factor [1], which in turn activates genes that arrest cell growth and induce apoptosis, thereby preventing the propagation of genetically damaged cells. It is the most important known tumor suppressor gene: perhaps half of all human neoplasms have mutations in p53, and there is a remarkable concordance between oncogenic mutation and the loss of p53 transcriptional activity [2]. There is also compelling experimental evidence that loss of p53 function (by whatever means) is one of the key oncogenic steps in human cells, along with altered telomerase activity and expression of mutant ras [3]. So far, however, relatively few of the genes regulated by p53 have been identified and it is not even known how many binding sites there are for p53 in the genome, although an estimate based on the incidence of the canonical p53 consensus binding site (four palindromic copies of the sequence 5'-PuPuPuGA/T-3', where Pu is either purine) in a limited region suggests there may be as many as 200 to 300, possibly representing the same number of p53-responsive genes [4]. This makes the p53 response an attractive target for the emerging techniques for global analysis of gene expression, and two recent reports [5,6] illustrate the ways in which these techniques can be used to elucidate the spectrum of genes regulated by this key transcription factor. Vogelstein and colleagues [5] have used serial analysis of gene expression (SAGE) to identify 34 genes that exhibit at least a 10-fold upregulation in response to inducible expression of p53; Tanaka et al. [6] have used differential display to identify p53R2, a homolog of ribonuclease reductase small subunit (R2) as a target gene, thereby for the first time implicating p53 directly in the repair of DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm3 were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1x105 cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.