21 resultados para PRECIPITATE
Resumo:
The rising number of people with cognitive impairment is placing health care budgets under significant strain. Dementia related behavioural change is a major independent risk factor for admission to expensive institutional care, and aggressive symptoms in particular are poorly tolerated by carers and frequently precipitate the collapse of home coping strategies. Aggressive change may result from known genetic risk factors for Alzheimer's disease (AD) and therefore accompany conventional markers such as apolipoprotein E (ApoE). We tested this hypothesis in 400 moderately to severely affected AD patients who were phenotyped for the presence of aggressive or agitated behaviour during the month prior to interview using the Neuropsychiatric Inventory with Caregiver Distress. The proportion of subjects with aggression/agitation in the month prior to interview was 51.8%. A significantly higher frequency of the e4 allele was found in individuals recording aggression/agitation in the month prior to interview (chi2 = 6.69, df = 2, p = 0.03). The additional risk for aggression/agitation conferred by e4 was also noted when e4 genotypes were compared against non-e4 genotypes (chi2 = 5.45, df = 1, p = 0.02, OR = 1.60, confidence interval (CI) 1.06 to 2.43). These results indicate that advanced Alzheimer's disease patients are at greater risk of aggressive symptoms because of a genetic weakness in apolipoprotein E.
Resumo:
We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.
Resumo:
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Resumo:
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.
Resumo:
Research on the kinetics of precipitate formation and austenite reversion in maraging steels has received great attention due to their importance to steel properties. Judging from the literature in recent years, research into maraging steels has been very active, mainly extending to new types of steels, for new applications beyond the traditional strength requirements. This chapter provides an in-depth overview of the literature in this area. In addition, the kinetics of precipitate formation are analysed using the Johnson–Mehl–Avrami (JMA) theory.
Resumo:
A major goal in vaccine development is elimination of the ‘cold chain’, the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 oC, but not when stored at 40 oC / 75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 oC / 75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation as compared to the original formulation when stored at 40 oC /75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.
Resumo:
The anionic speciation of chlorostannate(II) ionic liquids, prepared by mixing 1-alkyl-3-methylimidazolium chloride and tin(II) chloride in various molar ratios, chi(SnCl2), was investigated in both solid and liquid states. The room temperature ionic liquids were investigated by Sn-119 NMR spectroscopy, X-ray photoelectron spectroscopy, and viscometry. Crystalline samples were studied using Raman spectroscopy, single-crystal X-ray crystallography, and differential scanning calorimetry. Both liquid and solid systems (crystallized from the melt) contained [SnCl3](-) in equilibrium with Cl- when chi(SnCl2) < 0.50, [SnCl3](-) in equilibrium with [Sn2Cl5](-) when chi(SnCl2) > 0.50, and only [SnCl3](-) when chi(SnCl2) = 0.50. Tin(II) chloride was found to precipitate when chi(SnCl2) > 0.63. No evidence was detected for the existence of [SnCl4](-) across the entire range of chi(SnCl2) although such anions have been reported in the literature for chlorostannate(II) organic salts crystallized from organic solvents. Furthermore, the Lewis acidity of the chlorostannate(II)-based systems, expressed by their Gutmann acceptor number, has been determined as a function of the composition, chi(SnCl2), to reveal Lewis acidity for chi(SnCl2) > 0.50 samples comparable to the analogous systems based on zinc(II). A change of the Lewis basicity of the anion was estimated using H-1 NMR spectroscopy, by comparison of the measured chemical shifts of the C-2 hydrogen in the imidazolium ring. Finally, compositions containing free chloride anions (chi(SnCl2) < 0.50) were found to oxidize slowly in air to form a chlorostannate(IV) ionic liquid containing the [SnCl6](2-) anion.
Resumo:
Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment hypoxia is known to drive malignant progression. This study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold chambers (DSF) were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide and vehicle-only treated tumours were re-established in vitro and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2mg/kg/day) decreased tumour oxygenation by 45% within 24h, reaching a nadir of 0.09% oxygen (0.67±0.06 mmHg) by day 7; this persisted until day 14 when it increased up to day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at days 7 and 14 with revascularization occurring by day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50mg/kg; single dose) caused greater tumour growth delay than bicalutamide alone. This study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.