5 resultados para POLYOLEFIN FOAMS
Resumo:
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.
Resumo:
The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)
Resumo:
Microneedles (MNs) are emerging devices that can be used for the delivery of drugs at specific locations1. Their performance is primarily judged by different features and the penetration through tissue is one of the most important aspects to evaluate. For detailed studies of MN performance different kind of in-vitro, exvivo and in-vivo tests should be performed. The main limitation of some of these tests is that biological tissue is too heterogeneous, unstable and difficult to obtain. In addition the use of biological materials sometimes present legal issues. There are many studies dealing with artificial membranes for drug diffusion2, but studies of artificial membranes for Microneedle mechanical characterization are scarce3. In order to overcome these limitations we have developed tests using synthetic polymeric membranes instead of biological tissue. The selected artificial membrane is homogeneous, stable, and readily available. This material is mainly composed of a roughly equal blend of a hydrocarbon wax and a polyolefin and it is commercially available under the brand name Parafilm®. The insertion of different kind of MN arrays prepared from crosslinked polymers were performed using this membrane and correlated with the insertion of the MN arrays in ex-vivo neonatal porcine skin. The insertion depth of the MNs was evaluated using Optical coherence tomography (OCT). The implementation of MN transdermal patches in the market can be improved by make this product user-friendly and easy to use. Therefore, manual insertion is preferred to other kind of procedures. Consequently, the insertion studies were performed in neonatal porcine skin and the artificial membrane using a manual insertion force applied by human volunteers. The insertion studies using manual forces correlated very well with the same studies performed with a Texture Analyzer equipment. These synthetic membranes seem to mimic closely the mechanical properties of the skin for the insertion of MNs using different methods of insertion. In conclusion, this artificial membrane substrate offers a valid alternative to biological tissue for the testing of MN insertion and can be a good candidate for developing a reliable quality control MN insertion test.