41 resultados para POLY(2,5-BENZIMIDAZOLE) MEMBRANES
Resumo:
I discovered that 2,5OAS family of proteins was transcriptionally upregulated by BRCA1 and interferon gamma in a synergistic manner. This correlated with synergistically induced apoptosis and both the induction of 2,5OAS and the accompanying apoptosis could be inhibited by 2,5OAS specific siRNA proving 2,5OAS was the apoptotic effector.
Resumo:
This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.
Resumo:
Cationic antimicrobial agents may prevent device-associated infections caused by Staphylococcus epidermidis and Staphylococcus aureus. This study reports that the cationic antimicrobial polymer poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) was more effective at antagonizing growth of clinical isolates of S. epidermidis than of S. aureus. Importantly, mature S. epidermidis biofilms were significantly inactivated by pDMAEMA. The S. aureus isolates tested were generally more hydrophobic than the S. epidermidis isolates and had a less negative charge, although a number of individual S. aureus and S. epidermidis clinical isolates had similar surface hydrophobicity and charge values. Fluorescence spectroscopy and flow cytometry revealed that fluorescently labelled pDMAEMA interacted strongly with S. epidermidis compared with S. aureus. S. aureus Delta dltA and Delta mprF mutants were less hydrophobic and therefore more susceptible to pDMAEMA than wild-type S. aureus. Although the different susceptibility of S. epidermidis and S. aureus isolates to pDMAEMA is complex, influenced in part by surface hydrophobicity and charge, these findings nevertheless reveal the potential of pDMAEMA to treat S. epidermidis infections.
Resumo:
The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2) , and the lipopeptide C(12) -Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12) -Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.
Resumo:
Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.