10 resultados para PHOSPHOLIPIDS
Resumo:
Extra virgin olive oil is produced in the form of a
Resumo:
Recent evidence suggests that HDL can directly inhibit LDL oxidation, a key early stage in atherogenesis. Patients with chronic renal failure are at increased cardiovascular risk, have reduced HDL levels and altered HDL composition. We have therefore investigated whether compositional changes in HDL lead to decreased HDL antioxidant capacity in these patients. In comparison to control subject HDL, patient HDL contained less total cholesterol, cholesterol esters, phospholipids and alpha-tocopherol. LDL, HDL and LDL + HDL were standardised for protein and oxidised in the presence of Cu2+. The rate of propagation during HDL oxidation was reduced in the patient group (3.28 +/- 0.65 x 10(-5) vs. 4.60 +/- 0.97 x 10(-5) abs. U/min, P
Resumo:
The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex 1) is Still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of Delta pH and Delta psi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization or the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force, Delta pH and Delta psi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex 1, we did not find indications for primary or secondary Na+ translocation by Y lipolytica complex I. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Prothrombin interacts with phosphatidylserine containing platelet membranes via its N-terminal, gamma-carboxyglutamate (gla) residue-rich domain. Once bound it is cleaved to form the active protease, thrombin (factor IIa). Human prothrombin was cleaved with cathepsin G in the absence of calcium and magnesium ions. Under these conditions, the gla domain was removed. Phospholipid protected the protein from this proteolytic event, and this suggests that a conformational change may be induced by interaction with phospholipids. Binding of prothrombin to a surface containing 20% phosphatidylserine/80% phosphatidylcholine was detected by surface plasmon resonance, whereas no interaction with gla-domainless prothrombin was observed. Binding of intact prothrombin in the presence of calcium ions showed complex association kinetics, suggesting multiple modes of initial interaction with the surface. The kinetics of the dissociation phase could be fitted to a two-phase, exponential decay. This implies that there are at least two forms of the protein on the surface one of which dissociates tenfold more slowly than the other. Taken together, these data suggest that, on binding to a membrane surface, prothrombin undergoes a conformational change to a form which binds more tightly to the membrane.
Resumo:
N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.
Resumo:
We previously reported the identification of a novel family of immunomodulatory proteins, termed helminth defense molecules (HDMs), that are secreted by medically important trematode parasites. Since HDMs share biochemical, structural, and functional characteristics with mammalian cathelicidin-like host defense peptides (HDPs), we proposed that HDMs modulate the immune response via molecular mimicry of host molecules. In the present study, we report the mechanism by which HDMs influence the function of macrophages. We show that the HDM secreted by Fasciola hepatica (FhHDM-1) binds to macrophage plasma membrane lipid rafts via selective interaction with phospholipids and/or cholesterol before being internalized by endocytosis. Following internalization, FhHDM-1 is rapidly processed by lysosomal cathepsin L to release a short C-terminal peptide (containing a conserved amphipathic helix that is a key to HDM function), which then prevents the acidification of the endolysosomal compartments by inhibiting vacuolar ATPase activity. The resulting endolysosomal alkalization impedes macrophage antigen processing and prevents the transport of peptides to the cell surface in conjunction with MHC class II for presentation to CD4(+) T cells. Thus, we have elucidated a novel mechanism by which helminth pathogens alter innate immune cell function to assist their survival in the host.-Robinson, M. W., Alvarado, R., To, J., Hutchinson, A. T., Dowdell, S. N., Lund, M., Turnbull, L., Whitchurch, C. B., O'Brien, B. A., Dalton, J. P., Donnelly, S. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from membrane phospholipids and is believed to be the rate-limiting enzyme in the arachidonic acid pathway. We report herein the isolation of a 3 kb fragment of rodent genomic DNA containing part of the first intron, the first exon and 5'-flanking sequence. The start site of transcription was mapped by 5'-rapid amplification of cDNA ends and corroborated by ribonuclease protection assay. The gene has a TATAless promoter with no classical Sp1 binding sites or initiator element. A microsatellite series of CA repeats was noted in the 5'-flanking region of both the rodent and human promoters. Deletion constructs have been analysed for luciferase activity and confirmed promoter activity.
Resumo:
Introduction: Obestatin is a controversial gastrointestinal peptide purported to have metabolic actions.
Objectives: This study investigated whether treatment with a stable obestatin analogue (PEG-OB(Cys10, Cys13)) changed plasma metabolite levels firstly in lean and subsequently in diet-induced obesity (DIO) C57BL6/J mice.
Methods: Untargeted LC-HRMS metabolomics experiments were carried out in ESI + mode with plasma extracts from both groups of animals. Data were normalised, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified.
Results: In lean mice, 39 metabolites were significantly changed by obestatin treatment and the majority of these were increased, including various C16 and C18 moieties of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and monoacylglycerol, along with vitamin A, vitamin D3, tyrosine, acetylcarnitine and 2α-(hydroxymethyl)-5α-androstane-3β,17β-diol. Decreased concentrations of glycolithocholic acid, 3-dehydroteasterone and various phospholipids were observed. In DIO mice, 25 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater in DIO mice than in lean mice, and in contrast, the majority of metabolite changes were decreases. Four metabolites affected in both groups included glycolithocholic acid, and three different long-chain (C18) phospholipid molecules (phosphatidylethanolamine, platelet activating factor (PAF), and monoacylglycerol). Metabolites exclusively affected in DIO mice included various phosphatidylcholines, lysophosphatidylcholines and fatty acyls, as well as creatine and oxidised glutathione.
Conclusion: This investigation demonstrates that obestatin treatment affects phospholipid turnover and influences lipid homeostasis, whilst providing convincing evidence that obestatin may be acting to ameliorate diet-induced impairments in lipid metabolism, and it may influence steroid, bile acid, PAF and glutathione metabolism.