2 resultados para PHASE-LAG


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors studied pattern stability and error correction during in-phase and antiphase 4-ball fountain juggling. To obtain ball trajectories, they made and digitized high-speed film recordings of 4 highly skilled participants juggling at 3 different heights (and thus different frequencies). From those ball trajectories, the authors determined and analyzed critical events (i.e., toss, zenith, catch, and toss onset) in terms of variability of point estimates of relative phase and temporal correlations. Contrary to common findings on basic instances of rhythmic interlimb coordination, in-phase and antiphase patterns were equally variable (i.e., stable). Consistent with previous findings, however, pattern stability decreased with increasing frequency. In contrast to previous results for 3-ball cascade juggling, negative lag-one correlations for catch-catch intervals were absent, but the authors obtained evidence for error corrections between catches and toss onsets. That finding may have reflected participants' high skill level, which yielded smaller errors that allowed for corrections later in the hand cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.