22 resultados para PH-sensitivity
Resumo:
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.
Resumo:
Lux-marked bacterial biosensors and a commercial toxicity testing bacterial strain (Microtox) were exposed to 2,4-dichlorophenol (DCP) and the light output response measured. Increasing DCP concentrations caused a decrease in light output in all three biosensors with an order of sensitivity (in terms of luminescence decrease over the DCP concentration range) of Pseudomonas fluorescens <Escherichia coli <Microtox. Adsorption of DCP to E. coli was measured using uniformly ring labelled [14C]DCP and found to be very rapid. The effect of pH on toxicity and adsorption was also investigated. Low pH values increased the amount of DCP adsorbed to the cell and increased the toxicity of DCP.
Resumo:
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.
Resumo:
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.
Resumo:
The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0–13.2 with an acceptable response rate of around 50 min, having shown a very good stability over a period of longer than 20 months thus far. The sensor has also demonstrated little cross-sensitivity to ionic strength (IS) and also excellent photostability through a series of laboratory tests. These features make this type of sensor potentially well suited for in situ long term monitoring of pH in concrete structures, to enhance structural monitoring in the civil engineering sector
Resumo:
The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and composition of the gaseous phase (aerobic vs. microaerobic) determine susceptibility of a marine bacterium, Halomonas hydrothermalis, to sub-optimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5 % v/v of O2, 10 % v/v of CO2, reduced pH) reduced sensitivity to temperature across the 13 °C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth's biosphere.
Resumo:
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3 - challenge and to quantify transport activity. The NO3 --associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3 --free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μM NO3 -. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity mensurable approx. 100 min after first exposure to NO3 -; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3 - additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 μM NO3 -; and it was suppressed when NH4 +, was present during the first, inductive exposure to NO3 -. Voltage clamp measurements carried out immediately before and following NO3 - additions showed that the NO3 --evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages -400 to +100 mV). Measurements of NO3 - uptake using NO3 --selective macroelectrodes indicated a charge stoichiometry for NO3 - transport of 1(+):1(NO3 -) with common K(m) and J(max) values around 25 μM and 75 pmol NO3 - cm-2sec-1, respectively, and combined measurements of pH(o) and [NO3 -](o) showed a net uptake of approx. 1 H+ with each NO3 - anion. Analysis of the NO3 - current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pH(o) and [NO3 -](o). Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH(o) of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3 -. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+](o). These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO anion transported across the membrane, and implicate a carrier cycle in which NO binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3 - transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3 - transport; finally, they distinguish metabolite repression of NO3 - transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.
Resumo:
The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.
Resumo:
First-order time remaining until a moving observer will pass an environmental element is optically specified in two different ways. The specification provided by global tau (based on the pattern of change of angular bearing) requires that the element is stationary and that the direction of motion is accurately detected, whereas the specification provided by composite tau (based on the patterns of change of optical size and optical distance) does not require either of these. We obtained converging evidence,for our hypothesis. that observers are sensitive to composite tau in four experiments involving, relative judgments of, time to, passage with forced-choice methodology. Discrimination performance was enhanced in the presence of a local expansion component, while being unaffected when the detection of the direction of heading was impaired. Observers relied on the information carried in composite tau rather than on the information carried in its constituent components. Finally, performance was similar under conditions of observer motion and conditions of object motion. Because composite tau specifies first-order time remaining for a large number of situations, the different ways in which it may be detected are discussed.