47 resultados para PEI
Resumo:
Clustering analysis of data from DNA microarray hybridization studies is an essential task for identifying biologically relevant groups of genes. Attribute cluster algorithm (ACA) has provided an attractive way to group and select meaningful genes. However, ACA needs much prior knowledge about the genes to set the number of clusters. In practical applications, if the number of clusters is misspecified, the performance of the ACA will deteriorate rapidly. In fact, it is a very demanding to do that because of our little knowledge. We propose the Cooperative Competition Cluster Algorithm (CCCA) in this paper. In the algorithm, we assume that both cooperation and competition exist simultaneously between clusters in the process of clustering. By using this principle of Cooperative Competition, the number of clusters can be found in the process of clustering. Experimental results on a synthetic and gene expression data are demonstrated. The results show that CCCA can choose the number of clusters automatically and get excellent performance with respect to other competing methods.
Resumo:
For a digital echo canceller it is desirable to reduce the adaptation time, during which the transmission of useful data is not possible. LMS is a non-optimal algorithm in this case as the signals involved are statistically non-Gaussian. Walach and Widrow (IEEE Trans. Inform. Theory 30 (2) (March 1984) 275-283) investigated the use of a power of 4, while other research established algorithms with arbitrary integer (Pei and Tseng, IEEE J. Selected Areas Commun. 12(9)(December 1994) 1540-1547) or non-quadratic power (Shah and Cowan, IEE.Proc.-Vis. Image Signal Process. 142 (3) (June 1995) 187-191). This paper suggests that continuous and automatic, adaptation of the error exponent gives a more satisfactory result. The family of cost function adaptation (CFA) stochastic gradient algorithm proposed allows an increase in convergence rate and, an improvement of residual error. As special case the staircase CFA algorithm is first presented, then the smooth CFA is developed. Details of implementations are also discussed. Results of simulation are provided to show the properties of the proposed family of algorithms. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.
Resumo:
This letter derives mathematical expressions for the received signal-to-interference-plus-noise ratio (SINR) of uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) multiuser MIMO systems. An improved frequency domain receiver algorithm is derived for the studied systems, and is shown to be significantly superior to the conventional linear MMSE based receiver in terms of SINR and bit error rate (BER) performance.
Resumo:
This paper considers a Q-ary orthogonal direct-sequence code-division multiple-access (DS-CDMA) system with high-rate space-time linear dispersion codes (LDCs) in time-varying Rayleigh fading multiple-input-multiple-output (MIMO) channels. We propose a joint multiuser detection, LDC decoding, Q-ary demodulation, and channel-decoding algorithm and apply the turbo processing principle to improve system performance in an iterative fashion. The proposed iterative scheme demonstrates faster convergence and superior performance compared with the V-BLAST-based DS-CDMA system and is shown to approach the single-user performance bound. We also show that the CDMA system is able to exploit the time diversity offered by the LDCS in rapid-fading channels.
Resumo:
Recently, a single-symbol decodable transmit strategy based on preprocessing at the transmitter has been introduced to decouple the quasi-orthogonal space-time block codes (QOSTBC) with reduced complexity at the receiver [9]. Unfortunately, it does not achieve full diversity, thus suffering from significant performance loss. To tackle this problem, we propose a full diversity scheme with four transmit antennas in this letter. The proposed code is based on a class of restricted full-rank single-symbol decodable design (RFSDD) and has many similar characteristics as the coordinate interleaved orthogonal designs (CIODs), but with a lower peak-to-average ratio (PAR).
Resumo:
In this letter, the performance bound of the IEEE 802.16d channel is examined analytically in order to gain an insight into its theoretical potential. Different design strategies, such as orthogonal frequency division multiplexing (OFDM) and single-carrier frequency-domain equalization (SC-FDE), time-domain decision feedback equalization (DFE), and sphere decoder (SD) techniques are discussed and compared to the theoretical bound.
Resumo:
Here, the Jacobi iterative algorithm is applied to combat intersymbol interference (ISI) caused by frequency-selective channels. The performance bound of the equaliser is analysed in order to gain an insight into its asymptotic behaviour. Because of the error propagation problem, the potential of this algorithm is not reached in an uncoded system. However, its extension to a coded system with the application of the turbo-processing principle results in a new turbo equalisation algorithm, which demonstrates comparable performance with reduced complexity compared with some existing filter-based turbo equalisation schemes; and superior performance compared with some frequency domain solutions, such as orthogonal frequency division multiplexing and single-carrier frequency domain equalisation.