65 resultados para Osteoporosis. Neural networks. Antenna. Bone density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Interest in the prevention of osteoporosis is increasing and thus there is a need for an acceptable osteoporosis prevention programme in general practice. AIM. A study was undertaken to identify a cohort of middle-aged women attending a general practice who would be eligible for a longitudinal study looking at bone mineral density, osteoporosis and the effectiveness of hormone replacement therapy. This study aimed to describe the relationship between medical and lifestyle risk factors for osteoporosis and the initial bone density measurements in this group of women. METHOD. A health visitor administered a questionnaire to women aged between 48 and 52 years registered with a Belfast general practice. The main outcome measures were menopausal status, presence of medical and lifestyle risk factors and bone mineral density measurements. RESULTS. A total of 358 women our of 472 (76%) took part in the study which was conducted in 1991 and 1992. A highly significant difference was found between the mean bone mineral density of premenopausal, menopausal and postmenopausal women within the narrow study age range, postmenopausal women having the lowest bone mineral density. A significant relationship was found between body mass index and bone mineral density, a greater bone mineral density being found among women with a higher body mass index. Risk factors such as smoking and sedentary lifestyle were common (reported by approximately one third of respondents) but a poor relationship was found between these two and all the other risk factors and bone mineral density in this age group. CONCLUSION. Risk of osteoporosis cannot be identified by the presence of risk factors in women aged between 48 and 52 years. In terms of a current prevention strategy for general practice it would be better to take a population-based approach except for those women known to be at high risk of osteoporosis: women with early menopause or those who have had an oophorectomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful