47 resultados para Orthodontic mini-implants
Resumo:
Bacterial infection primarily with Staphylococcus spp. and Propionibacterium acnes remains a significant complication following total hip replacement. In this in vitro study, we investigated the efficacy of gentamicin loading of bone cement and pre- and postoperative administration of cefuroxime in the prevention of biofilm formation by clinical isolates. High and low initial inocula, representative of the number of bacteria that may be present at the operative site as a result of overt infection and skin contamination, respectively, were used. When a high initial inoculum was used, gentamicin loading of the cement did not prevent biofilm formation by the 10 Staphylococcus spp. and the 10 P. acnes isolates tested. Similarly, the use of cefuroxime in the fluid phase with gentamicin-loaded cement did not prevent biofilm formation by four Staphylococcus spp. and four P. acnes isolates tested. However, when a low bacterial inoculum was used, a combination of both gentamicin-loaded cement and cefuroxime prevented biofilm formation by these eight isolates. Our results indicate that this antibiotic combination may protect against infection after intra-operative challenge with bacteria present in low numbers as a result of contamination from the skin but would not protect against bacteria present in high numbers as a result of overt infection of an existing implant.
Resumo:
There can be wide variation in the level of oral/aural language ability that prelingually hearing-impaired children develop after cochlear implantation. Automatic perceptual processing mechanisms have come under increasing scrutiny in attempts to explain this variation. Using mismatch negativity methods, this study explored associations between auditory sensory memory mechanisms and verbal working memory function in children with cochlear implants and a group of hearing controls of similar age. Whilst clear relationships were observed in the hearing children between mismatch activation and working memory measures, this association appeared to be disrupted in the implant children. These findings would fit with the proposal that early auditory deprivation and a degraded auditory signal can cause changes in the processes underpinning the development of oral/aural language skills in prelingually hearing-impaired children with cochlear implants and thus alter their developmental trajectory
Resumo:
There is currently a shifting focus towards finding natural compounds that may prevent or treat cancer, due to the problems that exist with current chemotherapeutic regimens. The fruit of the Punica granatum (pomegranate) contains hundreds of phytochemicals and pomegranate extracts have recently been shown to exhibit antioxidant properties, thought to be due to the action of ellagic acid, the main polyphenol in pomegranate. In this mini review the effects of pomegranate extracts and ellagic acid on the proliferation of prostate cancer cells and their future potential are discussed.
Resumo:
This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.