5 resultados para Ordovician
Resumo:
Specimens of the polyplacophoran mollusk 'Helminthochiton' thraivensis Reed from the Upper Ordovician of southwest Scotland provide rare examples of complete valve series preserved in near life position, albeit as external molds. Application of high-resolution X-ray microtomography to one such specimen has revealed the exceptional preservation of its last meal, which included elements of a crinoid column, in its intestine. The interaction was either predatory or scavenging; extant chitons are not known to be crinoidivorous. This is the earliest direct record of predation or scavenging on crinoids in the fossil record. It is also the first indication that the broad axial canal of primitive crinoids may have contained nutritious tissues. The predatory or scavenging habit of H. thraivensis is consistent with its inferred phylogenetic position as a stem-group aplacophoran and provides new data suggesting an origin of carnivory early in the evolution of this clade.
Resumo:
An exceptional specimen of the Late Ordovician mollusc ‘Helminthochiton’ thraivensis Reed, from the Katian of the Lady Burn Starfish Beds, southwest Scotland, preserves gut contents that include nine pelmatozoan ossicles. These are interpreted as including two nodal and five intermodal columnals, and two radice ossicles from the attachment structure. The stem was cyclocyclic and heteromorphic, possibly N212. Radice ossicles were wider than the height of nodals, so radice scars must have encroached onto the latera of adjacent pluricolumnals. These features were compared with the 26 known pelmatozoan taxa from the Lady Burn Starfish Beds. Paracrinoids (one species) and glyptocystitid rhombiferans (six species) were discounted as prey because of their cemented attachment, and incorrect columnal morphology and lack of attachment, respectively. Of 19 species of crinoids, eight are discounted in which the column is pentagonal, tetragonal or unknown. Of the remaining eleven species, only the monobathrid camerate Macrostylocrinus cirrifer Ramsbottom satisfies all criteria for identification of the prey, including heteromorphy and radice scars encroaching adjacent internodals.
Resumo:
The position of the earliest-derived living molluscs, the Polyplacophora ( chitons) and shell-less vermiform Aplacophora, remains highly contentious despite many morphological, developmental and molecular studies of extant organisms. These two groups are thought to represent either a basal molluscan grade or a clade (Aculifera) sister to the 'higher' molluscs (Conchifera). These incompatible hypotheses result in very different predictions about the earliest molluscs. A new cladistic analysis incorporating both Palaeozoic and extant molluscs is presented here. Our results support the monophyly of Aculifera and suggest that extant aplacophorans and polyplacophorans both derive from a disparate group of multivalved molluscs in two major clades. Reanalysis of the critical Ordovician taxon 'Helminthochiton' thraivensis shows that this animal lacks a true foot despite bearing polyplacophoran-like valves. Its position within our phylogenetic reconstruction indicates that many fossil 'polyplacophorans' in the order Palaeoloricata are likely to represent footless stem-group aplacophorans. 'H.' thraivensis and similar forms such as Acaenoplax may be morphological stepping stones between chitons and the shell-less aplacophorans. Our results imply that crown-group molluscan synapomorphies include serial repetition, the presence of a foot, a mineralized scleritome and a creeping rather than worm-like mode of life.
Resumo:
The palaeoloricate ‘polyplacophorans’ are an extinct paraphyletic group of basal chiton-like organisms known primarily from their fossilized valves. Their phylo- genetic placement remains contentious, but they are likely to include both stem-group Polyplacophora and stem- group Aplacophora. Candidates for the latter position include ‘Helminthochiton’ thraivensis from the Ordovician of Scotland, which we redescribe here through a combined optical and micro-CT (XMT) restudy of the type material. The 11 specimens in the type series are all articulated, presenting partial or complete valve series as well as moul- dic preservation of the girdle armature; they demonstrate a vermiform body plan. The valves are typically palaeolori- cate in aspect, but differ in detail from all existing palaeol- oricate genera; we hence erect Phthipodochiton gen. nov. to contain the species. The most notable feature of the fossils is the spicular girdle; this is impersistently preserved, but demonstrably wraps entirely around the ventral surface of the animal, implying that a ‘true’ (i.e. polyplacophoran like) foot was absent, although we do not exclude the pos- sibility of a narrow solenogastre-like median pedal groove having been present. Phthipodochiton thraivensis presents an apparent mosaic of aplacophoran and polyplacophoran features and as such will inform our understanding of the relationship between these groups of extant molluscs. An inference may also be drawn that at least some other pal- aeoloricates possessed an ‘armoured aplacophoran’ body plan, in contrast to the ‘limpet-like’ body plan of extant Polyplacophora.
Resumo:
Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.