22 resultados para Optimization methods
Resumo:
Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.
Resumo:
The conventional radial basis function (RBF) network optimization methods, such as orthogonal least squares or the two-stage selection, can produce a sparse network with satisfactory generalization capability. However, the RBF width, as a nonlinear parameter in the network, is not easy to determine. In the aforementioned methods, the width is always pre-determined, either by trial-and-error, or generated randomly. Furthermore, all hidden nodes share the same RBF width. This will inevitably reduce the network performance, and more RBF centres may then be needed to meet a desired modelling specification. In this paper we investigate a new two-stage construction algorithm for RBF networks. It utilizes the particle swarm optimization method to search for the optimal RBF centres and their associated widths. Although the new method needs more computation than conventional approaches, it can greatly reduce the model size and improve model generalization performance. The effectiveness of the proposed technique is confirmed by two numerical simulation examples.
Resumo:
Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.
Resumo:
In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.
Resumo:
This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.
Resumo:
Fuzzy-neural-network-based inference systems are well-known universal approximators which can produce linguistically interpretable results. Unfortunately, their dimensionality can be extremely high due to an excessive number of inputs and rules, which raises the need for overall structure optimization. In the literature, various input selection methods are available, but they are applied separately from rule selection, often without considering the fuzzy structure. This paper proposes an integrated framework to optimize the number of inputs and the number of rules simultaneously. First, a method is developed to select the most significant rules, along with a refinement stage to remove unnecessary correlations. An improved information criterion is then proposed to find an appropriate number of inputs and rules to include in the model, leading to a balanced tradeoff between interpretability and accuracy. Simulation results confirm the efficacy of the proposed method.