8 resultados para Optimization algorithms
Resumo:
The optimization of full-scale biogas plant operation is of great importance to make biomass a competitive source of renewable energy. The implementation of innovative control and optimization algorithms, such as Nonlinear Model Predictive Control, requires an online estimation of operating states of biogas plants. This state estimation allows for optimal control and operating decisions according to the actual state of a plant. In this paper such a state estimator is developed using a calibrated simulation model of a full-scale biogas plant, which is based on the Anaerobic Digestion Model No.1. The use of advanced pattern recognition methods shows that model states can be predicted from basic online measurements such as biogas production, CH4 and CO2 content in the biogas, pH value and substrate feed volume of known substrates. The machine learning methods used are trained and evaluated using synthetic data created with the biogas plant model simulating over a wide range of possible plant operating regions. Results show that the operating state vector of the modelled anaerobic digestion process can be predicted with an overall accuracy of about 90%. This facilitates the application of state-based optimization and control algorithms on full-scale biogas plants and therefore fosters the production of eco-friendly energy from biomass.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.
Resumo:
Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.
Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.
Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.
Resumo:
Energy consumption is an important concern in modern multicore processors. The energy consumed by a multicore processor during the execution of an application can be minimized by tuning the hardware state utilizing knobs such as frequency, voltage etc. The existing theoretical work on energy minimization using Global DVFS (Dynamic Voltage and Frequency Scaling), despite being thorough, ignores the time and the energy consumed by the CPU on memory accesses and the dynamic energy consumed by the idle cores. This article presents an analytical energy-performance model for parallel workloads that accounts for the time and the energy consumed by the CPU chip on memory accesses in addition to the time and energy consumed by the CPU on CPU instructions. In addition, the model we present also accounts for the dynamic energy consumed by the idle cores. The existing work on global DVFS for parallel workloads shows that using a single frequency for the entire duration of a parallel application is not energy optimal and that varying the frequency according to the changes in the parallelism of the workload can save energy. We present an analytical framework around our energy-performance model to predict the operating frequencies (that depend upon the amount of parallelism) for global DVFS that minimize the overall CPU energy consumption. We show how the optimal frequencies in our model differ from the optimal frequencies in a model that does not account for memory accesses. We further show how the memory intensity of an application affects the optimal frequencies.