29 resultados para Optimal control problem
Resumo:
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.
Resumo:
OBJECTIVE
To assess the relationship between glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS
Pregnancy outcome (pre-eclampsia or gestational hypertension) was assessed prospectively in 749 women from the randomized controlled Diabetes and Pre-eclampsia Intervention Trial (DAPIT). HbA1c (A1C) values were available up to 6 months before pregnancy (n = 542), at the first antenatal visit (median 9 weeks) (n = 721), at 26 weeks’ gestation (n = 592), and at 34 weeks’ gestation (n = 519) and were categorized as optimal (<6.1%: referent), good (6.1–6.9%), moderate (7.0–7.9%), and poor (=8.0%) glycemic control, respectively.
RESULTS
Pre-eclampsia and gestational hypertension developed in 17 and 11% of pregnancies, respectively. Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy compared with women who did not develop pre-eclampsia (P < 0.05, respectively). In early pregnancy, A1C =8.0% was associated with a significantly increased risk of pre-eclampsia (odds ratio 3.68 [95% CI 1.17–11.6]) compared with optimal control. At 26 weeks’ gestation, A1C values =6.1% (good: 2.09 [1.03–4.21]; moderate: 3.20 [1.47–7.00]; and poor: 3.81 [1.30–11.1]) and at 34 weeks’ gestation A1C values =7.0% (moderate: 3.27 [1.31–8.20] and poor: 8.01 [2.04–31.5]) significantly increased the risk of pre-eclampsia compared with optimal control. The adjusted odds ratios for pre-eclampsia for each 1% decrement in A1C before pregnancy, at the first antenatal visit, at 26 weeks’ gestation, and at 34 weeks’ gestation were 0.88 (0.75–1.03), 0.75 (0.64–0.88), 0.57 (0.42–0.78), and 0.47 (0.31–0.70), respectively. Glycemic control was not significantly associated with gestational hypertension.
CONCLUSIONS
Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy. These data suggest that optimal glycemic control both early and throughout pregnancy may reduce the risk of pre-eclampsia in women with type 1 diabetes.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
This paper presents a new methodology for solving the multi-vehicle formation control problem. It employs a unique extension-decomposition-aggregation scheme to transform the overall complex formation control problem into a group of subproblems, which work via boundary interactions or disturbances. Thus, it is proved that the overall formation system is exponentially stable in the sense of Lyapunov, if all the individual augmented subsystems (IASs) are stable. Linear matrix inequality-based H8 control methodology is employed to design the decentralized formation controllers to reject the impact of the formation changes being treated as boundary disturbances and guarantee the stability of all the IASs, consequently maintaining the stability of the overall formation system. Simulation studies are performed to verify the stability, performance, and effectiveness of the proposed strategy.
Resumo:
Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.
Resumo:
This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.
Resumo:
The development of 5G enabling technologies brings new challenges to the design of power amplifiers (PAs). In particular, there is a strong demand for low-cost, nonlinear PAs which, however, introduce nonlinear distortions. On the other hand, contemporary expensive PAs show great power efficiency in their nonlinear region. Inspired by this trade-off between nonlinearity distortions and efficiency, finding an optimal operating point is highly desirable. Hence, it is first necessary to fully understand how and how much the performance of multiple-input multiple-output (MIMO) systems deteriorates with PA nonlinearities. In this paper, we first reduce the ergodic achievable rate (EAR) optimization from a power allocation to a power control problem with only one optimization variable, i.e. total input power. Then, we develop a closed-form expression for the EAR, where this variable is fixed. Since this expression is intractable for further analysis, two simple lower bounds and one upper bound are proposed. These bounds enable us to find the best input power and approach the channel capacity. Finally, our simulation results evaluate the EAR of MIMO channels in the presence of nonlinearities. An important observation is that the MIMO performance can be significantly degraded if we utilize the whole power budget.
Resumo:
The optimization of full-scale biogas plant operation is of great importance to make biomass a competitive source of renewable energy. The implementation of innovative control and optimization algorithms, such as Nonlinear Model Predictive Control, requires an online estimation of operating states of biogas plants. This state estimation allows for optimal control and operating decisions according to the actual state of a plant. In this paper such a state estimator is developed using a calibrated simulation model of a full-scale biogas plant, which is based on the Anaerobic Digestion Model No.1. The use of advanced pattern recognition methods shows that model states can be predicted from basic online measurements such as biogas production, CH4 and CO2 content in the biogas, pH value and substrate feed volume of known substrates. The machine learning methods used are trained and evaluated using synthetic data created with the biogas plant model simulating over a wide range of possible plant operating regions. Results show that the operating state vector of the modelled anaerobic digestion process can be predicted with an overall accuracy of about 90%. This facilitates the application of state-based optimization and control algorithms on full-scale biogas plants and therefore fosters the production of eco-friendly energy from biomass.
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.
Resumo:
We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining a shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.