36 resultados para Optimal Stochastic Control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE
To assess the relationship between glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes.

RESEARCH DESIGN AND METHODS
Pregnancy outcome (pre-eclampsia or gestational hypertension) was assessed prospectively in 749 women from the randomized controlled Diabetes and Pre-eclampsia Intervention Trial (DAPIT). HbA1c (A1C) values were available up to 6 months before pregnancy (n = 542), at the first antenatal visit (median 9 weeks) (n = 721), at 26 weeks’ gestation (n = 592), and at 34 weeks’ gestation (n = 519) and were categorized as optimal (<6.1%: referent), good (6.1–6.9%), moderate (7.0–7.9%), and poor (=8.0%) glycemic control, respectively.

RESULTS
Pre-eclampsia and gestational hypertension developed in 17 and 11% of pregnancies, respectively. Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy compared with women who did not develop pre-eclampsia (P < 0.05, respectively). In early pregnancy, A1C =8.0% was associated with a significantly increased risk of pre-eclampsia (odds ratio 3.68 [95% CI 1.17–11.6]) compared with optimal control. At 26 weeks’ gestation, A1C values =6.1% (good: 2.09 [1.03–4.21]; moderate: 3.20 [1.47–7.00]; and poor: 3.81 [1.30–11.1]) and at 34 weeks’ gestation A1C values =7.0% (moderate: 3.27 [1.31–8.20] and poor: 8.01 [2.04–31.5]) significantly increased the risk of pre-eclampsia compared with optimal control. The adjusted odds ratios for pre-eclampsia for each 1% decrement in A1C before pregnancy, at the first antenatal visit, at 26 weeks’ gestation, and at 34 weeks’ gestation were 0.88 (0.75–1.03), 0.75 (0.64–0.88), 0.57 (0.42–0.78), and 0.47 (0.31–0.70), respectively. Glycemic control was not significantly associated with gestational hypertension.

CONCLUSIONS
Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy. These data suggest that optimal glycemic control both early and throughout pregnancy may reduce the risk of pre-eclampsia in women with type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realistic experimental imperfections, including noise sources that could be modeled either as independent Markovian baths or as certain forms of spatially correlated environments. We highlight interesting connections between the fidelity of state transfer and quantum stochastic resonance effects. The scheme is flexible enough to act as an effective entangling gate for the generation of genuine multipartite entanglement in a control-limited setting. Possible experimental implementations using superconducting qubits are also briefly discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.