6 resultados para Optical pattern recognition Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a substantial effort to build a real-time interactive multimodal dialogue system with a focus on emotional and non-verbal interaction capabilities. The work is motivated by the aim to provide technology with competences in perceiving and producing the emotional and non-verbal behaviours required to sustain a conversational dialogue. We present the Sensitive Artificial Listener (SAL) scenario as a setting which seems particularly suited for the study of emotional and non-verbal behaviour, since it requires only very limited verbal understanding on the part of the machine. This scenario allows us to concentrate on non-verbal capabilities without having to address at the same time the challenges of spoken language understanding, task modeling etc. We first summarise three prototype versions of the SAL scenario, in which the behaviour of the Sensitive Artificial Listener characters was determined by a human operator. These prototypes served the purpose of verifying the effectiveness of the SAL scenario and allowed us to collect data required for building system components for analysing and synthesising the respective behaviours. We then describe the fully autonomous integrated real-time system we created, which combines incremental analysis of user behaviour, dialogue management, and synthesis of speaker and listener behaviour of a SAL character displayed as a virtual agent. We discuss principles that should underlie the evaluation of SAL-type systems. Since the system is designed for modularity and reuse, and since it is publicly available, the SAL system has potential as a joint research tool in the affective computing research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.