13 resultados para Optical Devices


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone(1,2). However, its practical applications are limited by the inherently weak nonlinear effects that govern photon-photon interactions in conventional materials, particularly at high switching rates(3). Here, we show that the recently discovered nonlocal optical behaviour of plasmonic nanorod metamaterials(4) enables an enhanced, ultrafast, nonlinear optical response. We observe a large (80%) change of transmission through a subwavelength thick slab of metamaterial subjected to a low control light fluence of 7 mJ cm(-2), with switching frequencies in the terahertz range. We show that both the response time and the nonlinearity can be engineered by appropriate design of the metamaterial nanostructure. The use of nonlocality to enhance the nonlinear optical response of metamaterials, demonstrated here in plasmonic nanorod composites, could lead to ultrafast, low-power all-optical information processing in subwavelength-scale devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of millimetre wave and terahertz systems to penetrate clothing is well known. The fact that the transmission of clothing and the reflectivity of the body vary as a function of frequency is less so. Several instruments have now been developed to exploit this capability. The choice of operating frequency, however, has often been associated with the maturity and the cost of the enabling technology rather than a sound systems engineering approach. Top level user and systems requirements have been derived to inform the development of design concepts. Emerging micro and nano technology concepts have been reviewed and we have demonstrated how these can be evaluated against these requirements by simulation using OpenFx. Openfx is an open source suite of 3D tools for modeling, animation and visualization which has been modified for use at millimeter waves. © 2012 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background

Diabetic macular oedema (DMO) is a thickening of the central retina, or the macula, and is associated with long-term visual loss in people with diabetic retinopathy (DR). Clinically significant macular oedema (CSMO) is the most severe form of DMO. Almost 30 years ago, the Early Treatment Diabetic Retinopathy Study (ETDRS) found that CSMO, diagnosed by means of stereoscopic fundus photography, leads to moderate visual loss in one of four people within three years. It also showed that grid or focal laser photocoagulation to the macula halves this risk. Recently, intravitreal injection of antiangiogenic drugs has also been used to try to improve vision in people with macular oedema due to DR.Optical coherence tomography (OCT) is based on optical reflectivity and is able to image retinal thickness and structure producing cross-sectional and three-dimensional images of the central retina. It is widely used because it provides objective and quantitative assessment of macular oedema, unlike the subjectivity of fundus biomicroscopic assessment which is routinely used by ophthalmologists instead of photography. Optical coherence tomography is also used for quantitative follow-up of the effects of treatment of CSMO.

Objectives

To determine the diagnostic accuracy of OCT for detecting DMO and CSMO, defined according to ETDRS in 1985, in patients referred to ophthalmologists after DR is detected. In the update of this review we also aimed to assess whether OCT might be considered the new reference standard for detecting DMO.

Search methods

We searched the Cochrane Database of Systematic Reviews (CDSR), the Database of Abstracts of Reviews of Effects (DARE), the Health Technology Assessment Database (HTA) and the NHS Economic Evaluation Database (NHSEED) (The Cochrane Library 2013, Issue 5), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2013), EMBASE (January 1950 to June 2013), Web of Science Conference Proceedings Citation Index - Science (CPCI-S) (January 1990 to June 2013), BIOSIS Previews (January 1969 to June 2013), MEDION and the Aggressive Research Intelligence Facility database (ARIF). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 25 June 2013. We checked bibliographies of relevant studies for additional references.

Selection Criteria

We selected studies that assessed the diagnostic accuracy of any OCT model for detecting DMO or CSMO in patients with DR who were referred to eye clinics. Diabetic macular oedema and CSMO were diagnosed by means of fundus biomicroscopy by ophthalmologists or stereophotography by ophthalmologists or other trained personnel.

Data collection and analysis

Three authors independently extracted data on study characteristics and measures of accuracy. We assessed data using random-effects hierarchical sROC meta-analysis models.

Main results

We included 10 studies (830 participants, 1387 eyes), published between 1998 and 2012. Prevalence of CSMO was 19% to 65% (median 50%) in nine studies with CSMO as the target condition. Study quality was often unclear or at high risk of bias for QUADAS 2 items, specifically regarding study population selection and the exclusion of participants with poor quality images. Applicablity was unclear in all studies since professionals referring patients and results of prior testing were not reported. There was a specific 'unit of analysis' issue because both eyes of the majority of participants were included in the analyses as if they were independent.In nine studies providing data on CSMO (759 participants, 1303 eyes), pooled sensitivity was 0.78 (95% confidence interval (CI) 0.72 to 0.83) and specificity was 0.86 (95% CI 0.76 to 0.93). The median central retinal thickness cut-off we selected for data extraction was 250 µm (range 230 µm to 300 µm). Central CSMO was the target condition in all but two studies and thus our results cannot be applied to non-central CSMO.Data from three studies reporting accuracy for detection of DMO (180 participants, 343 eyes) were not pooled. Sensitivities and specificities were about 0.80 in two studies and were both 1.00 in the third study.Since this review was conceived, the role of OCT has changed and has become a key ingredient of decision-making at all levels of ophthalmic care in this field. Moreover, disagreements between OCT and fundus examination are informative, especially false positives which are referred to as subclinical DMO and are at higher risk of developing clinical CSMO.

Authors' conclusions

Using retinal thickness thresholds lower than 300 µm and ophthalmologist's fundus assessment as reference standard, central retinal thickness measured with OCT was not sufficiently accurate to diagnose the central type of CSMO in patients with DR referred to retina clinics. However, at least OCT false positives are generally cases of subclinical DMO that cannot be detected clinically but still suffer from increased risk of disease progression. Therefore, the increasing availability of OCT devices, together with their precision and the ability to inform on retinal layer structure, now make OCT widely recognised as the new reference standard for assessment of DMO, even in some screening settings. Thus, this review will not be updated further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the agreement between optical low-coherence reflectometry (OLCR) and anterior segment optical coherence tomography (AS-OCT) for biometry of the anterior segment. SETTING: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China. DESIGN: Evaluation of diagnostic technology. METHODS: A series of OLCR (Lenstar LS 900) and AS-OCT measurements of the anterior segment were taken for consecutive subjects aged 35 years and older in a population-based study. The differences and correlations between the 2 methods of ocular biometry were assessed. Agreement was calculated as the 95% limits of agreement (LoA). RESULTS: The mean age of the 776 subjects was 55.2 years ± 12.0 (SD); 54.6% were women. The mean central corneal thickness (CCT) was smaller with OLCR than with AS-OCT (537.84 ± 31.46 μm versus 559.39 ± 32.02 μm) as was anterior chamber depth (ACD) (2.60 ± 0.37 mm versus 2.72 ± 0.37 mm) and anterior chamber width (ACW) (11.76 ± 0.47 mm versus 12.04 ± 0.55 mm) (all P<.001). The 95% LoA between the 2 instruments were -44.80 to 1.71 μm for CCT, -0.17 to -0.06 mm for ACD, and -1.28 to 0.72 mm for ACW. CONCLUSION: Optical low-coherence reflectometry and AS-OCT yielded potentially interchangeable ACD measurements, while the CCT and ACW measurements acquired by the 2 devices showed clinically significant differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal overlapping of ultra-short and focussed laser pulses is a particularly challenging task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for the measurement of the temporal delay between two focussed and ultra-short laser pulses. This method is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for high-power multiple-beam laser experiments.