66 resultados para Operational transconductance amplifier
Resumo:
In this work, we report on the significance of gate-source/drain extension region (also known as underlap design) optimization in double gate (DG) FETs to improve the performance of an operational transconductance amplifier (OTA). It is demonstrated that high values of intrinsic voltage gain (A(VO_OTA)) > 55 dB and unity gain frequency (f(T_OTA)) similar to 57 GHz in a folded cascode OTA can be achieved with gate-underlap channel design in 60 nm DG MOSFETs. These values correspond to 15 dB improvement in A(VO_OTA) and three fold enhancement in f(T_OTA) over a conventional non-underlap design. OTA performance based on underlap single gate SOI MOSFETs realized in ultra-thin body (UTB) and ultra-thin body BOX (UTBB) technologies is also evaluated. A(VO_OTA) values exhibited by a DG MOSFET-based OTA are 1.3-1.6 times higher as compared to a conventional UTB/UTBB single gate OTA. f(T_OTA) values for DG OTA are 10 GHz higher for UTB OTAs whereas a twofold improvement is observed with respect to UTBB OTAs. The simultaneous improvement in A(VO_OTA) and f(T_OTA) highlights the usefulness of underlap channel architecture in improving gain-bandwidth trade-off in analog circuit design. Underlap channel OTAs demonstrate high degree of tolerance to misalignment/oversize between front and back gates without compromising the performance, thus relaxing crucial process/technology-dependent parameters to achieve 'idealized' DG MOSFETs. Results show that underlap OTAs designed with a spacer-to-straggle (s/sigma) ratio of 3.2 and operated below a bias current (IBIAS) of 80 mu A demonstrate optimum performance. The present work provides new opportunities for realizing future ultra-wide band OTA design with underlap DG MOSFETs.
Resumo:
In this paper, gain-bandwidth (GB) trade-off associated with analog device/circuit design due to conflicting requirements for enhancing gain and cutoff frequency is examined. It is demonstrated that the use of a nonclassical source/drain (S/D) profile (also known as underlap channel) can alleviate the GB trade-off associated with analog design. Operational transconductance amplifier (OTA) with 60 nm underlap S/D MOSFETs achieve 15 dB higher open loop voltage gain along with three times higher cutoff frequency as compared to OTA with classical nonunderlap S/D regions. Underlap design provides a methodology for scaling analog devices into the sub-100 nm regime and is advantageous for high temperature applications with OTA, preserving functionality up to 540 K. Advantages of underlap architecture over graded channel (GC) or laterally asymmetric channel (LAC) design in terms of GB behavior are demonstrated. Impact of transistor structural parameters on the performance of OTA is also analyzed. Results show that underlap OTAs designed with spacer-to-straggle ratio of 3.2 and operated below a bias current of 80 microamps demonstrate optimum performance. The present work provides new opportunities for realizing future ultra wide band OTA design with underlap DG MOSFETs in silicon-on-insulator (SOI) technology. Index Terms—Analog/RF, double gate, gain-bandwidth product, .
Resumo:
An analysis of a modified series-L/parallel-tuned Class-E power amplifier is presented, which includes the effects that a shunt capacitance placed across the switching device will have on Class-E behaviour. In the original series L/parallel-tuned topology in which the output transistor capacitance is not inherently included in the circuit, zero-current switching (ZCS) and zero-current derivative switching (ZCDS) conditions should be applied to obtain optimum Class-E operation. On the other hand, when the output transistor capacitance is incorporated in the circuit, i.e. in the modified series-L/parallel-tuned topology, the ZCS and ZCDS would not give optimum operation and therefore zero-voltage-switching (ZVS) and zero-voltage-derivative switching (ZVDS) conditions should be applied instead. In the modified series-L/parallel-tuned Class-E configuration, the output-device inductance and the output-device output capacitance, both of which can significantly affect the amplifier's performance at microwave frequencies, furnish part, if not all, of the series inductance L and the shunt capacitance COUT, respectively. Further, when compared with the classic shunt-C/series-tuned topology, the proposed Class-E configuration offers some advantages in terms of 44% higher maximum operating frequency (fMAX) and 4% higher power-output capability (PMAX). As in the classic topology, the fMAX of the proposed amplifier circuit is reached when the output-device output capacitance furnishes all of the capacitance COUT, for a given combination of frequency, output power and DC supply voltage. It is also shown that numerical simulations agree well with theoretical predictions.
Resumo:
This paper gives the first experimental characterisation of the phase noise response of the recently introduced Inverse Class E topology when operated as an amplifier and then as an oscillator. The results indicate that in amplifier and oscillator modes of operation conversion efficiencies of 64%, and 42% respectively are available, and that the excess PM noise added as a consequence of saturated Class E operation results in about a 10 dB increase in PM over that expected from a small-signal Class A amplifier operating at much lower efficiency. Inverse Class E phase transfer dependence on device drain bias and flicker noise are presented in order to show, respectively, that the Inverse Class E amplifier and oscillator follow the trends predicted by conventional phase noise theory. © 2007 EuMA.
Resumo:
In this paper we present an adaptation to the classical I/Q modulator topology which simultaneously allows it to operate both as a multi-modulation standard modulator, and as a high efficiency balanced amplifier. This is made possible by concurrently exploiting the ability of the Class E amplifiers to produce variable output power at maximum power added efficiency, PAE, by simple dc bias control while faithfully reproducing phase encoded signals. Experimental evidence for the behaviour of the modulator when operated in QPSK mode at 2.33 GHz with a 1 Msymbol/s rate shows that Error Vector Magnitude of less than 5% with amplifier PAE of 65% is possible. The multimode modulator presented here should lead to significantly reduced complexity, enhanced functionality transceivers for use in dc power sensitive handheld wireless applications. © 2007 EuMA.
Resumo:
In this article we propose a technique for dual-band Class-E power amplifier design using composite right/left-handed transmission lines, CRLH TLs. Design equations are presented and design procedures are elaborated. Because of the nonlinear phase dispersion characteristic of CRLH TLs, the single previous attempt at applying this method to dual bond Class-E amplifier design was not sufficient to simultaneously satisfy, the minimum requirement of Class-E impedances at both the fundamental and the second harmonic frequencies. This article rectifies this situation. A design example illustrating the synthesis procedure for a 0.5W-5V dual band Class-E amplifier circuit simultaneously operated at 900 MHz and 2.4 GHz is given and compared with ADS simulation.
Resumo:
This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.
Resumo:
The design procedure, fabrication and measurement of a Class-E power amplifier with excellent second- and third-harmonic suppression levels are presented. A simplified design technique offering compact physical layout is proposed. With a 1.2 mm gate-width GaAs MESFET as a switching device, the amplifier is capable of delivering 19.2 dBm output power at 2.41 GHz, achieves peak PAE of 60% and drain efficiency of 69%, and exhibits 9 dB power gain when operated from a 3 V DC supply voltage. When compared to the classical Class-E two-harmonic termination amplifier, the Class-E amplifier employing three-harmonic terminations has more than 10% higher drain efficiency and 23 dB better third-harmonic suppression level. Experimental results are presented and good agreement with simulation is obtained. Further, to verify the practical implementation in communication systems, the Bluetooth-standard GFSK modulated signal is applied to both two- and three-harmonic amplifiers. The measured RMS FSK deviation error and RMS magnitude error were, for the three-harmonic case, 1.01 kHz and 0.122%, respectively, and, for the two-harmonic case, 1.09 kHz and 0.133%. © 2007 The Institution of Engineering and Technology.