25 resultados para Off-gas analysis
Resumo:
This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.
Resumo:
A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air 13C/12C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl2F2) and CFC-113 (C2Cl3F3). Significant, but consistent, isotopic shifts of -27.5 to -25.6 do occur within the system for CFC-11 (CCl3F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (10 L). Representative urban air analyses from Belfast City are also presented which give carbon isotope results similar to published values for 13C/12C analysis of MeCl (-39.1) and CFC-113 (-28.1). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4) and CFC-12 (-37.0).
Resumo:
OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.
Resumo:
Ultraviolet and X-ray observations show evidence of outflowing gas around many active galactic nuclei. It has been proposed that some of these outflows are driven off gas infalling towards the central supermassive black hole. We perform radiative transfer calculations to compute the gas ionization state and the emergent X-ray spectra for both two- and three-dimensional (3D) hydrodynamical simulations of this outflow-from-inflow scenario. By comparison with observations, our results can be used to test the theoretical models and guide future numerical simulations. We predict both absorption and emission features, most of which are formed in a polar funnel of relatively dense (10 -10 g cm ) outflowing gas. This outflow causes strong absorption for observer orientation angles of ?35°. Particularly in 3D, the strength of this absorption varies significantly for different lines of sight owing to the fragmentary structure of the gas flow. Although infalling material occupies a large fraction of the simulation volume, we do not find that it imprints strong absorption features in the X-ray spectra since the ionization state is predicted to be very high. Thus, an absence of observed inflow absorption features does not exclude the models. The main spectroscopic consequence of the infalling gas is a Compton-scattered continuum component that partially re-fills the absorption features caused by the outflowing polar funnel. Fluorescence and scattering in the outflow are predicted to give rise to several emission features including a multicomponent Fe Ka emission complex for all observer orientations. For the hydrodynamical simulations considered, we predict both ionization states and column densities for the outflowing gas that are too high to be quantitatively consistent with well-observed X-ray absorption systems. Nevertheless, our results are qualitatively encouraging and further exploration of the model parameter space is warranted. Higher resolution hydrodynamic simulations are needed to determine whether the outflows fragment on scales unresolved in our current study, which may yield the denser lower ionization material that could reconcile the models and the observations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
We present a model-atmosphere analysis for the bright (V similar to 13) star ZNG-1, in the globular cluster M10. From high-resolution (R similar to 40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T-eff = 26 500 +/- 1000 K and log g = 3.6 +/- 0.2 dex. A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas- dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.
Resumo:
An analysis of high-resolution Anglo-Australian Telescope (AAT)/University College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet (UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is performed, using non-local thermodynamic equilibrium (non-LTE) model atmospheres to estimate stellar atmospheric parameters and chemical composition. Abundances are derived for C, N, O, Mg, Si and S, and compared with those found previously by Moehler et al. We find a general metal underabundance relative to young B-type stars, consistent with the average metallicity of the cluster. Our results indicate that ROA 5701 has not undergone a gas-dust separation scenario as previously suggested. However, its abundance pattern does imply that ROA 5701 has evolved off the asymptotic giant branch (AGB) prior to the onset of the third dredge-up.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
This paper is concerned with assessing the building’s the energy efficiency and qualities of a modular design for the education industry, in order assess the long economic benefits. The research includes a life-cycle energy and cost analysis of the school building design, predicting the impact on the operational cost of the building as a result of the addition of photovoltaic panels. The paper also includes a comparative study between the ECO Modular Solutions building, and a current standard prefabricated school building, quantifying the savings in CO2 emissions and savings in cost.