171 resultados para Observational
Resumo:
The Solar Eclipse Corona Imaging System (SECIS) observed a strong 6-s oscillation in an active region coronal loop, during the 1999 August 11 total solar eclipse. In the present paper we show that this oscillation is associated with a fast-mode magneto-acoustic wave that travels through the loop apex with a velocity of 2100 km s-1. We use near-simultaneous SOHO observations to calculate the parameters of the loop and its surroundings such as density, temperature and their spatial variation. We find that the temporal evolution of the intensity is in agreement with the model of an impulsively generated, fast-mode wave.
Resumo:
Oscillations in network bright points (NBPs) are studied at a variety of chromospheric heights. In particular, the three-dimensional variation of NBP oscillations is studied using image segmentation and cross-correlation analysis between images taken in light of Ca II K3, Ha core, Mg I b2, and Mg I b1-0.4 Å. Wavelet analysis is used to isolate wave packets in time and to search for height-dependent time delays that result from upward- or downward-directed traveling waves. In each NBP studied, we find evidence for kink-mode waves (1.3, 1.9 mHz), traveling up through the chromosphere and coupling with sausage-mode waves (2.6, 3.8 mHz). This provides a means for depositing energy in the upper chromosphere. We also find evidence for other upward- and downward-propagating waves in the 1.3-4.6 mHz range. Some oscillations do not correspond to traveling waves, and we attribute these to waves generated in neighboring regions.
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
OBJECTIVE - The aim if the study was to investigate whether children born to older mothers have an increased risk of type 1 diabetes by performing a pooled analysis of previous studies using individual patient data to adjust for recognized confounders.
RESEARCH DESIGN AND METHODS - Relevant studies published before June 2009 were identified from MEDLINE, Web of Science, and EMBASE. Authors of studies were contacted and asked to provide individual patient data or conduct prespecified analyses. Risk estimates of type 1 diabetes by maternal age were calculated for each study, before and after adjustment for potential confounders. Meta-analysis techniques were used to derive combined odds ratios and to investigate heterogeneity among studies.
RESULTS - Data were available for 5 cohort and 25 case-control studies, including 14,724 cases of type 1 diabetes. Overall, there was, on average, a 5% (95% CI 2-9) increase in childhood type 1 diabetes odds per 5-year increase in maternal age (P = 0.006), but there was heterogeneity among studies (heterogeneity I 2 = 70%). In studies with a low risk of bias, there was a more marked increase in diabetes odds of 10% per 5-year increase in maternal age. Adjustments for potential confounders little altered these estimates. CONCLUSIONS - There was evidence of a weak but significant linear increase in the risk of childhood type 1 diabetes across the range of maternal ages, but the magnitude of association varied between studies. A very small percentage of the increase in the incidence of childhood type 1 diabetes in recent years could be explained by increases in maternal age.
Resumo:
Aims/hypothesis: We investigated whether children who are heavier at birth have an increased risk of type 1 diabetes. Methods: Relevant studies published before February 2009 were identified from literature searches using MEDLINE, Web of Science and EMBASE. Authors of all studies containing relevant data were contacted and asked to provide individual patient data or conduct pre-specified analyses. Risk estimates of type 1 diabetes by category of birthweight were calculated for each study, before and after adjustment for potential confounders. Meta-analysis techniques were then used to derive combined ORs and investigate heterogeneity between studies. Results: Data were available for 29 predominantly European studies (five cohort, 24 case-control studies), including 12,807 cases of type 1 diabetes. Overall, studies consistently demonstrated that children with birthweight from 3.5 to 4 kg had an increased risk of diabetes of 6% (OR 1.06 [95% CI 1.01-1.11]; p=0.02) and children with birthweight over 4 kg had an increased risk of 10% (OR 1.10 [95% CI 1.04-1.19]; p=0.003), compared with children weighing 3.0 to 3.5 kg at birth. This corresponded to a linear increase in diabetes risk of 3% per 500 g increase in birthweight (OR 1.03 [95% CI 1.00-1.06]; p=0.03). Adjustments for potential confounders such as gestational age, maternal age, birth order, Caesarean section, breastfeeding and maternal diabetes had little effect on these findings. Conclusions/interpretation: Children who are heavier at birth have a significant and consistent, but relatively small increase in risk of type 1 diabetes. © 2010 Springer-Verlag.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
Aims/hypothesis: The aim of this study was to investigate the evidence of an increased risk of childhood-onset type 1 diabetes in children born by Caesarean section by systematically reviewing the published literature and performing a meta-analysis with adjustment for recognised confounders.
Methods: After MEDLINE, Web of Science and EMBASE searches, crude ORs and 95% CIs for type 1 diabetes in children born by Caesarean section were calculated from the data reported in each study. Authors were contacted to facilitate adjustments for potential confounders, either by supplying raw data or calculating adjusted estimates. Meta-analysis techniques were then used to derive combined ORs and to investigate heterogeneity between studies.
Results: Twenty studies were identified. Overall, there was a significant increase in the risk of type 1 diabetes in children born by Caesarean section (OR 1.23, 95% CI 1.15-1.32, p<0.001). There was little evidence of heterogeneity between studies (p=0.54). Seventeen authors provided raw data or adjusted estimates to facilitate adjustments for potential confounders. In these studies, there was evidence of an increase in diabetes risk with greater birthweight, shorter gestation and greater maternal age. The increased risk of type 1 diabetes after Caesarean section was little altered after adjustment for gestational age, birth weight, maternal age, birth order, breast-feeding and maternal diabetes (adjusted OR 1.19, 95% CI 1.04-1.36, p=0.01).
Conclusions/interpretation: This analysis demonstrates a 20% increase in the risk of childhood-onset type 1 diabetes after Caesarean section delivery that cannot be explained by known confounders.