2 resultados para Objective visual acuity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To study, for the first time, the effect of wearing ready-made glasses and glasses with power determined by self-refraction on children's quality of life. METHODS: This is a randomized, double-masked non-inferiority trial. Children in grades 7 and 8 (age 12-15 years) in nine Chinese secondary schools, with presenting visual acuity (VA) ≤6/12 improved with refraction to ≥6/7.5 bilaterally, refractive error ≤-1.0 D and <2.0 D of anisometropia and astigmatism bilaterally, were randomized to receive ready-made spectacles (RM) or identical-appearing spectacles with power determined by: subjective cycloplegic retinoscopy by a university optometrist (U), a rural refractionist (R) or non-cycloplegic self-refraction (SR). Main study outcome was global score on the National Eye Institute Refractive Error Quality of Life-42 (NEI-RQL-42) after 2 months of wearing study glasses, comparing other groups with the U group, adjusting for baseline score. RESULTS: Only one child (0.18%) was excluded for anisometropia or astigmatism. A total of 426 eligible subjects (mean age 14.2 years, 84.5% without glasses at baseline) were allocated to U [103 (24.2%)], RM [113 (26.5%)], R [108 (25.4%)] and SR [102 (23.9%)] groups, respectively. Baseline and endline score data were available for 398 (93.4%) of subjects. In multiple regression models adjusting for baseline score, older age (p = 0.003) and baseline spectacle wear (p = 0.016), but not study group assignment, were significantly associated with lower final score. CONCLUSION: Quality of life wearing ready-mades or glasses based on self-refraction did not differ from that with cycloplegic refraction by an experienced optometrist in this non-inferiority trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.