67 resultados para OF-FUNCTION MUTATIONS
Resumo:
Papillon-Lefevre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients(1,2). Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset(3-6). The PLS locus has been mapped to chromosome 11q14-q21 (refs 7-9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.
Resumo:
The hypoxia-inducible factors (HIFs; isoforms HIF-1 alpha, HIF-2 alpha, HIF-3 alpha) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2 alpha gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2 alpha gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2 alpha gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2 alpha gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1 alpha is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.-Formenti, F., Beer, P. A., Croft, Q. P. P., Dorrington, K. L., Gale, D. P., Lappin, T. R. J., Lucas, G. S., Maher, E. R., Maxwell, P. H., McMullin, M. F., O'Connor, D. F., Percy, M. J., Pugh, C. W., Ratcliffe, P. J., Smith, T. G., Talbot, N. P., Robbins, P. A. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2 alpha gain-of-function mutation. FASEB J. 25, 2001-2011 (2011). www.fasebj.org
Resumo:
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon Lefevre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early,onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p. V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 mu moles/mg/min vs. 1,678.7 +/- SD 527.2 mu moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS. (C) 2004 Wiley-Liss, Inc.
Resumo:
Background The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. Methods We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. Results We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. Conclusions JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis.
Resumo:
Hypoxia-inducible factor (HIF) a, which has three isoforms, is central to the continuous balancing of the supply and demand of oxygen throughout the body. HIF-a is a transcription factor that modulates a wide range of processes, including erythropoiesis, angiogenesis, and cellular metabolism. We describe a family with erythrocytosis and a mutation in the HIF2A gene, which encodes the HIF-2a protein. Our functional studies indicate that this mutation leads to stabilization of the HIF-2a protein and suggest that wild-type HIF-2a regulates erythropoietin production in adults.
Resumo:
The RBE of alpha -particles in different mutations of Chinese hamster cells was determined with the aim of identifying differences in the sensitivity to x-ray and alpha -particle-induced DNA damage. Two parental lines of Chinese hamster cells and four radiosensitive mutants were irradiated with different single doses of x-rays and alpha -particles and clonogenic cell survival was determined. Radiosensitivity to x-rays varied by a factor of 5 between the cell strains whereas sensitivity to alpha -particle irradiation was almost identical among all strains. The RBE is only determined by the sensitivity of the cells towards x-rays. Since cells with different defects of repair or cell cycle control have different radiosensitivities, we conclude that the effects of x-ray irradiation and the RBE are mostly determined by the activity of repair processes.
Resumo:
Mild hyperhomocysteinaemia is a major risk factor for vascular disease and neural tube defects (NTDs), conferring an approximately three-fold relative risk for each condition. It has several possible causes: heterozygosity for rare loss of function mutations in the genes for 5,10-methylene tetrahydrofolate reductase (MTHFR) or cystathionine-beta-synthase (CBS); dietary insufficiency of vitamin co-factors B6, B12 or folates; or homozygosity for a common 'thermolabile' mutation in the MTHFR gene which has also been associated with vascular disease and NTDs. We quantified the contribution of the thermolabile mutation to the hyperhomocysteinaemic phenotype in a working male population (625 individuals). Serum folate and vitamin B12 concentrations were also measured and their relationship with homocysteine status and MTHFR genotype assessed. The homozygous thermolabile genotype occurred in 48.4, 35.5, and 23.4% of the top 5, 10, and 20% of individuals (respectively) ranked by plasma homocysteine levels, compared with a frequency of 11.5% in the study population as a whole, establishing that the mutation is a major determinant of homocysteine levels at the upper end of the range. Serum folate concentrations also varied with genotype, being lowest in thermolabile homozygotes. The MTHFR thermolabile genotype should be considered when population studies are designed to determine the effective homocysteine-lowering dose of dietary folate supplements, and when prophylactic doses of folate are recommended for individuals.
Resumo:
PURPOSE. Several reports have shown that mutations in the ABCR gene can lead to Stargardt disease (STGD)/fundus flavimaculatus (FFM), autosomal recessive retinitis pigmentosa (arRP), and autosomal recessive cone-rod dystrophy (arCRD). To assess the involvement of ABCR in these retinal dystrophies, the gene was screened in a panel of 70 patients of British origin. METHODS. Fifty-six patients exhibiting the STGD/FFM phenotype, 6 with arRP, and 8 with arCRD, were screened for mutations in the 50 exons of the ABCR gene by heteroduplex analysis and direct sequencing. Microsatellite marker haplotyping was used to determine ancestry. RESULTS. In the 70 patients analyzed, 31 sequence changes were identified, of which 20 were considered to be novel mutations, in a variety of phenotypes. An identical haplotype was associated with the same pair of in-cis alterations in 5 seemingly unrelated patients and their affected siblings with STGD/FFM. Four of the aforementioned patients were found to carry three alterations in the coding sequence of the ABCR gene, with two of them being in-cis. CONCLUSIONS. These results suggest that ABCR is a relatively polymorphic gene. Because putative mutations have been identified thus far only in 25 of 70 patients, of whom only 8 are compound heterozygotes, a large number of mutations have yet to be ascertained. The disease haplotype seen in the 5 patients carrying the same 'complex' allele is consistent with the presence of a common ancestor.