10 resultados para Numerical Evaluation
Resumo:
For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.
Resumo:
A numerical and experimental investigation on the mode-I intralaminar toughness of a hybrid plain weave composite laminate manufactured using resin infusion under flexible tooling (RIFT) process is presented in this paper. The pre-cracked geometries consisted of overheight compact tension (OCT), double edge notch (DEN) and centrally cracked four-point-bending (4PBT) test specimens. The position as well as the strain field ahead of the crack tip during the loading stage was determined using a digital speckle photogrammetry system. The limitation on the applicability of the standard data reduction schemes for the determination of intralaminar toughness of composite materials is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of the stress intensity factor for composites. The method accounts for material anisotropy and finite specimen dimension effects regardless of the geometry. The approach has been validated for alternative non-standard specimen geometries. A comparison between different methods currently available for computing the intralaminar fracture toughness in composite laminates is presented and a good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
This paper presents an experimental and numerical study focused on the tensile fibre fracture toughness characterisation of hybrid plain weave composite laminates using non-standardized Overheight Compact Tension (OCT) specimens. The position as well as the strain field ahead of the crack tip in the specimens was determined using a digital speckle photogrammetry system. The limitation on the applicability of standard data reduction schemes for the determination of the intralaminar fibre fracture toughness of composites is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of stress intensity factor for alternative composite specimen geometries. A comparison between different methods currently available to compute the intralaminar fracture toughness in composites is also presented and discussed. Good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
There is growing concern within the profession of pharmacy regarding the numerical competency of students completing their undergraduate studies. In this 7 year study, the numerical competency of first year pharmacy undergraduate students at the School of Pharmacy, Queen's University Belfast, was assessed both on entry to the MPharm degree and after completion of a basic numeracy course during the first semester of Level 1. The results suggest that students are not retaining fundamental numeracy concepts initially taught at secondary level education, and that the level of ability has significantly decreased over the past 7 years. Keywords: Numeracy; calculations; MPharm; assessment
Extracting S-matrix poles for resonances from numerical scattering data: Type-II Pade reconstruction
Resumo:
We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Pade approximant from given physical values (Bessis et al. (1994) [421: Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [451) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H-2 -> HE + H, F + HD : HE + D, Cl + HCI CIH + Cl and H + D-2 -> HD + D reactions. Some detailed examples are given in the text.
Resumo:
The use of accelerators, with compute architectures different and distinct from the CPU, has become a new research frontier in high-performance computing over the past ?ve years. This paper is a case study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is viable, there are considerable differences in the implementation strategies that must be followed on each.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
Our review of paleoclimate information for New Zealand pertaining to the past 30,000 years has identified a general sequence of climatic events, spanning the onset of cold conditions marking the final phase of the Last Glaciation, through to the emergence to full interglacial conditions in the early Holocene. In order to facilitate more detailed assessments of climate variability and any leads or lags in the timing of climate changes across the region, a composite stratotype is proposed for New Zealand. The stratotype is based on terrestrial stratigraphic records and is intended to provide a standard reference for the intercomparison and evaluation of climate proxy records. We nominate a specific stratigraphic type record for each climatic event, using either natural exposure or drill core stratigraphic sections. Type records were selected on thebasis of having very good numerical age control and a clear proxy record. In all cases the main proxy of the type record is subfossil pollen. The type record for the period from ca 30 to ca 18 calendar kiloyears BP (cal. ka BP) is designated in lake-bed sediments from a small morainic kettle lake (Galway tarn) in western South Island. The Galway tarn type record spans a period of full glacial conditions (Last Glacial Coldest Period, LGCP) within the Otira Glaciation, and includes three cold stadials separated by two cool interstadials. The type record for the emergence from glacial conditions following the termination of the Last Glaciation (post-Termination amelioration) is in a core of lake sediments from a maar (Pukaki volcanic crater) in Auckland, northern North Island, and spans from ca 18 to 15.64±0.41 cal. ka BP. The type record for the Lateglacial period is an exposure of interbedded peat and mud at montane Kaipo bog, eastern North Island. In this high-resolution type record, an initial mild period was succeeded at 13.74±0.13 cal. ka BP by a cooler period, which after 12.55±0.14 cal. ka BP gave way to a progressive ascent to full interglacial conditions that were achieved by 11.88±0.18 cal. ka BP. Although a type section is not formally designated for the Holocene Interglacial (11.88±0.18 cal. ka BP to the present day), the sedimentary record of Lake Maratoto on the Waikato lowlands, northwestern North Island, is identified as a prospective type section pending the integration and updating of existing stratigraphic and proxy datasets, and age models. The type records are interconnected by one or more dated tephra layers, the ages of which are derived from Bayesian depositional modelling and OxCal-based calibrations using the IntCal09 dataset. Along with the type sections and the Lake Maratoto record, important, well-dated terrestrial reference records are provided for each climate event. Climate proxies from these reference records include pollen flora, stable isotopes from speleothems, beetle and chironomid fauna, and glacier moraines. The regional composite stratotype provides a benchmark against which to compare other records and proxies. Based on the composite stratotype, we provide an updated climate event stratigraphic classification for the New Zealand region. © 2013 Elsevier Ltd.
Resumo:
This paper evaluates the potential of gabions as roadside safety barriers. Gabions have the capacity to blend into natural landscape, suggesting that they could be used as a safety barrier for low-volume road in scenic environments. In fact, gabions have already been used for this purpose in Nepal, but the impact response was not evaluated. This paper reports on numerical and experimental investigations performed on a new gabion barrier prototype. To assess the potential use as a roadside barrier, the optimal gabion unit size and mass were investigated using multibody analysis and four sets of 1:4 scaled crash tests were carried out to study the local vehicle-barrier interaction. The barrier prototype was then finalised and subjected to a TB31 crash test according to the European EN1317 standard for N1 safety barriers. The test resulted in a failure due to the rollover of the vehicle and tearing of the gabion mesh yielding a large working width. It was found that although the system potentially has the necessary mass to contain a vehicle, the barrier front face does not have the necessary stiffness and strength to contain the gabion stone filling and hence redirect the vehicle. In the EN1317 test, the gabion barrier acted as a ramp for the impacting vehicle, causing rollover.
Resumo:
A range of lanthanum strontium manganates (La1−xSrxMnO3–LSMO) where 0 ≤ x < 0.4 were prepared using a modified peroxide sol–gel synthesis method. The magnetic nanoparticle (MNP) clusters obtained for each of the materials were characterised using scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and infra-red (IR) spectroscopy in order to confirm the crystalline phases, crystallite size and cluster morphology. The magnetic properties of the materials were assessed using the Superconducting quantum interference device (SQUID) to evaluate the magnetic susceptibility, Curie temperature (Tc) and static hysteretic losses. Induction heating experiments also provided an insight into the magnetocaloric effect for each material. The specific absorption rate (SAR) of the materials was evaluated experimentally and via numerical simulations. The magnetic properties and heating data were linked with the crystalline structure to make predictions with respect to the best LSMO composition for mild hyperthermia (41 °C ≤ T ≤ 46 °C). La0.65Sr0.35MnO3, with crystallite diameter of 82.4 nm, (agglomerate size of ∼10 μm), Tc of 89 °C and SAR of 56 W gMn−1 at a concentration 10 mg mL−1 gave the optimal induction heating results (Tmax of 46.7 °C) and was therefore deemed as most suitable for the purposes of mild hyperthermia, vide infra.