9 resultados para Number systems. Arithmetic teaching. Number systems ancients
Resumo:
The Family Model – A transgenerational approach to mental health in families This workshop will provide an overview on The Family Model (TFM) and its use in promoting and facilitating a transgenerational family focus in Mental Health services, over the past 10 - 15 years. Each of the speakers will address a different perspective, including service user/consumer, clinical practice, education & training, research and policy. Adrian Falkov (chair) will provide an overview of TFM to set the scene and a ‘policy to practice’ perspective, based on use of TFM in Australia. Author: Heide Lloyd. The Family Model A personal (consumer/patient) perspective | United Kingdom Heide will provide a description of her experiences as a child, adult, parent & grandparent, using TFM as the structure around which to ‘weave’ her story and demonstrate how TFM has assisted her in understanding the impact of symptoms on her & family and how she has used it in her management of symptoms and recovery (personal perspective). The Family Model Education & training perspective Marie Diggins | United Kingdom PhD Bente Weimand | Norway Authors: Marie Diggins | United Kingdom PhD Bente Weimand | Norway This combined (UK & Norwegian) presentation will cover historical background to TFM and its use in eLearning (the Social Care Institute for Excellence)and a number of other UK initiatives, together with a description of the postgraduate masters course at the University Oslo/Akershus, using TFM. The Family Model A research perspective PhD Anne Grant | Northern Ireland Author: PhD Anne Grant | Ireland Anne Grant will describe how she used TFM as the theoretical framework for her PhD looking at family focused (nursing) practice in Ireland. The Family Model A service systems perspective Mary Donaghy | Northern Ireland Authors: PhD Adrian Falkov | Australia Mary Donaghy | N Ireland Mary Donaghy will discuss how TFM has been used to support & facilitate a cross service ‘whole of system’ change program in Belfast (NI) to achieve improved family focused practice. She will demonstrate its utility in achieving a broader approach to service design, delivery and evaluation.
Resumo:
Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.
Resumo:
This work studies the uplink of a cellular network with zero-forcing (ZF) receivers under imperfect channel state information at the base station. More specifically, apart from the pilot contamination, we investigate the effect of time variation of the channel due to the relative users' movement with regard to the base station. Our contributions include analytical expressions for the sum-rate with finite number of BS antennas, and also the asymptotic limits with infinite power and number of BS antennas, respectively. The numerical results provide interesting insights on how the user mobility degrades the system performance which extends previous results in the literature.
Resumo:
Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.
Resumo:
Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.
Resumo:
Recent evidence has highlighted the important role that number ordering skills play in arithmetic abilities (e.g., Lyons & Beilock, 2011). In fact, Lyons et al. (2014) demonstrated that although at the start of formal mathematics education number comparison skills are the best predictors of arithmetic performance, from around the age of 10, number ordering skills become the strongest numerical predictors of arithmetic abilities. In the current study we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was partially mediated by number ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor which included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.