23 resultados para Northwestern Yunnan
Resumo:
We examined the patterns of distribution and abundance, and reproductive traits (presence of gametophytes and size at time of reproduction) in the invasive Codium fragile ssp. fragile and the native C. tomentosum and C. vermilara on intertidal habitats of NW Spain at two dates. All three species coexist in the locations and habitats studied, although abundances were low. We found a greater proportion of C. fragile ssp. fragile towards the east of the Cantabrian coast and on upper levels on the shore, where conditions are more stressful. The proportion of thalli bearing gametangia in C. fragile ssp. fragile was greater than in the native species in all habitats. The presence of gametangia was size-dependent for all species, with the invasive species maturing at a smaller size, which combined with the previous features, might confer competitive advantages to this species over the native species. We also demonstrated that molecular analyses are necessary for the correct identification of C. fragile subspecies.
Resumo:
Presented here are stable nitrogen isotope data from a rock hyrax (Procavia capensis) middens from northwestern Namibia that record a series of rapid aridification events beginning at ca. 3800 cal yr BP, and which mark a progressive decrease in regional humidity across the Holocene. Strong correlations exist between this record and other terrestrial and marine archives from southern Africa, indicating that the observed pattern of climate change is regionally coherent. Combined, these data indicate hemispheric synchrony in tropical African climate change during the Holocene, with similar trends characterising the termination of the 'African Humid Period' (AHP) in both the northern and southern tropics. These findings run counter to the widely accepted model of direct low-latitude insolation forcing, which requires an antiphase relationship to exist between the hemispheres. The combined dataset highlights: 1) the importance of forcing mechanisms influencing the high northern latitudes in effecting low-latitude climate change in Africa, and 2) the potential importance of solar forcing and variations in the Earth's geomagnetic shield in determining both long-term and rapid centennial-scale climate changes, identifying a possible mechanism for the variations marking the AHP termination in both the southern and northern tropics. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved.
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
Aims. The aim of this study is to examine if the well-known chemical gradient in TMC-1 is reflected in the amount of rudimentary forms of carbon available in the gas-phase. As a tracer we use the CH radical which is supposed to be well correlated with carbon atoms and simple hydrocarbon ions. Methods. We observed the 9-cm ?-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. Results. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0 × 10-8 , to the southeast where it reaches a value of 2.0 × 10-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~16–20. These values are clearly larger than what has been measured recently in diffuse interstellar gas and is likely to be related to C to CO conversion at higher densities. The good correlation between CH and OH can be explained by similar production and destruction pathways. We suggest that the observed CH and OH abundance gradients are mainly due to enhanced abundances in a low-density envelope which becomes more prominent in the southeastern part and seems to continue beyond the dense filament. Conclusions. An extensive envelope probably signifies an early stage of dynamical evolution, and conforms with the detection of a large CH abundance in the southeastern part of the cloud. The implied presence of other simple forms of carbon in the gas phase provides a natural explanation for the observation of “early-type” molecules in this region.
Resumo:
It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west—an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.
Resumo:
This paper presents significant new insights into the appearance of agriculture at the north- western edge of Europe, focusing on Neolithic Ireland (4000-2500 cal BC). Previous studies were based upon a limited plant macro-remains dataset, as much of the Irish evidence is unpublished. A research project, 'Cultivating Societies', was implemented to examine the nature, timing and extent of agricultural activity in Neolithic Ireland through collation and analysis of different strands of published and unpublished archaeological and environmental evidence, with a particular focus on plant macro- remains, pollen, settlement and 14C data. Plant macro-remains from a total of 52 excavated sites were collated and analysed, representing the most comprehensive study to date of Neolithic plant remains from this region. Cereals were present at many locations and site types, sometimes in large quantities and most often at sites dating to the earlier Neolithic (3750-3600 cal BC). Emmer wheat was the dominant crop, at least at this time. Other crops included naked and hulled barley, naked wheat, einkorn wheat and flax. Analysis of arable weeds indicates that early plots were not managed under a shifting cultivation regime, which has important implications for understanding Neolithic settlement practices and how communities engaged with landscapes. The variety of crops cultivated in Neolithic Ireland is similar to those in Britain, reflecting a decreasing diversity in crop types as agriculture spread from south-east to north-west Europe.
Resumo:
We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose d O and d H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. © 2012 Wolfe et al.
Resumo:
Causes of late Quaternary extinctions of large mammals (" megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or con-fined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.