3 resultados para Northern Wisconsin Agricultural and Mechanical Association.
Resumo:
Several north temperate marine species were recorded on subtidal hard-substratum reef sites selected to produce a gradient of structural complexity. The study employed an established scuba-based census method, the belt transect. The three types of reef examined, with a measured gradient of increasing structural complexity, were natural rocky reef, artificial reef constructed of solid concrete blocks, and artificial reef made of concrete blocks with voids. Surveys were undertaken monthly over a calendar year using randomly placed fixed rope transects. For a number of conspicuous species of fish and invertebrates, significant differences were found between the levels of habitat complexity and abundance. Overall abundance for many of the species examined was 2-3 times higher on the complex artificial habitats than on simple artificial or natural reef habitats. The enhanced habitat availability produced by the increased structural complexity delivered through specifically designed artificial reefs may have the potential to augment faunal abundance while promoting species diversity.
Resumo:
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.
Resumo:
Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.